论文部分内容阅读
一、引言 在二值和多值逻辑的研究中,使用最广泛的代数系统是格代数系统和模代数系统。由于下述原因使模代数系统的研究受到重视:1)多值模代数中的两个基本运算的作用对象和运算结果都为多值信号,因而避免了在采用格代数时必然出现的译码器—二值电路一编码器的夹心面包式电路结构;2)模代数中的基本运算的含义及法则与普通代数相似,因而符合人们的数学习惯;3)一个函数通过GRM展式往往可以化简成非常简单的形式,从而使电路
I. Introduction In the study of binary and multi-valued logic, the most widely used algebraic systems are the lattice algebraic system and the modular algebraic system. The research on modulo algebraic systems has been paid much attention due to the following reasons: 1) The roles and operations of the two basic operations in multivalued modulo algebra are both multi-valued signals, thus avoiding the inevitable decoding when using algebra 2) A basic algebra in the modular algebra in the meaning and rules similar to ordinary algebra, and thus in line with people’s mathematical habits; 3) A function can often be GRM-style exhibition Jane into a very simple form, so that the circuit