论文部分内容阅读
风电场风电功率短期预测对并网系统的安全、经济和稳定运行具有重要意义。利用C-C法对风电功率时间序列进行了相空间重构;计算了风电功率时间序列的最大Lyapunov指数,两者均证实风电功率时间序列具有混沌特性,可采用混沌方法对其进行预测。利用不同阶数的Volterra自适应滤波器对风电功率进行短期预测。应用于2个不同风电场进行验证,结果显示:Volterra自适应滤波器能够反映出风电功率序列未来变化的趋势,并可以迭到较高的一步预测精度,但阶数不同,预测精度不同,阶数越低,精度越高。