论文部分内容阅读
针对动态多目标优化环境下寻找并跟踪变化的Pareto最优前沿和Pareto最优解集的难题,提出两个策略:自适应迁移策略和预测策略。自适应迁移策略是根据环境的变化自适应地插入迁移个体来提高算法种群的多样性,从而提高算法对动态环境的适应能力。预测策略是通过时间序列并加上一定的扰动来产生预测种群,来预测环境变化之后的Pareto最优解集,以达到对其快速跟踪的目的。通过两个策略在多目标差分演化算法上的应用来解决动态多目标优化问题。实验过程中,通过平均最优解集分布均匀度和平均决策空间世代距离等指标表明,基于自