论文部分内容阅读
以拓扑指数为结构描述符,用基于Levenberg-Marquardt优化的BP神经网络建立了醇类化合物的结构与色谱保留值的相关性模型,用于未知醇类化合物在SE-30和OV-3两根色谱柱上保留指数的同时预测,其学习速率优于文献中普通BP神经网络法,预测准确度与普通BP神经网络法接近,但优于多元线性回归法,因而是一种较好的预测有机化合物气相色谱保留指数的方法.