论文部分内容阅读
BP神经网络用于GPS高程拟合时存在收敛速度慢,受初始值选取影响大和易陷入局部极大值的问题。本文提出一种改进的BP神经网络高程拟合方法,将模拟退火算法(Simulated Annealing,SA)引入BP神经网络模型,利用模拟退火算法的全局寻优能力对BP神经网络的初始值进行选择,同时优化神经网络的各层神经元之间的连接权值和阈值,提高BP神经网络拟合法的拟合精度、收敛速度和推广泛化能力。最后结合实际算例对所提方法的拟合性能进行验证,结果表明利用模拟退火算法改进的BP神经网络进行高程拟合是可行且有效的