论文部分内容阅读
基于最大后验概率和MRF理论的图像恢复描述框架,提出一个面向图像恢复的推广变分模型.模型中将噪声建模为广义正态分布,利用最大似然法估计形状参数自动选择合适的范数作为数据保真项;将图像梯度场的分布建模为混合密度类,利用鲁棒估计理论构造一个耦合全变差积分和Dirichlet积分的图像先验模型作为正则化项.利用推广泛函的凸性,讨论了该推广模型的最优解存在性.最后提出结合梯度加权最速下降和半点格式的数值迭代算法.实验结果表明,推广模型能自动区分污染图像中的噪声分布特性,对于高斯噪声和脉冲噪声的污染图像都能取