论文部分内容阅读
针对颜色纹理特征结合单一分类器的传统识别方法对于多种黄瓜病害的识别精度较低的问题,该文提出基于词袋特征PCA(principalcomponentanalysis)多子空间自适应融合的黄瓜病害识别方法。该方法首先对多种病害建立类别相关词袋模型,提取病害图像的高维词袋特征,然后用主成分分析法将病害高维特征降维到多个不同维数子空间,并在各子空间上分别训练BP(backpropagation)神经网络;通过设置自适应阈值对待分类图像在各子空间上的分类得分进行融合得到识别结果。采集黄瓜角斑病、棒孢霉叶斑病、白粉病