论文部分内容阅读
Risk assessment of storm surge and wave hazards in the Huanghe Delta coastal area of the Bohai Sea requires accurate prediction of storm surge and wave hazards. So this study is aimed at establishing a coastal high-resolution (2' × 2') two-way coupled wave-tide-surge model, including three main physical mechanisms. The model was used for comparisons and analysis of simulated and measured wave heights and sea level in two moderate storm cases in the Huanghe Delta coastal area. We show that the effects of different physical mechanisms on wave heights are mainly determined by wave-current interaction by radiation stress in the wave energy equation. Wave-age dependent surface wind stress and radiation stress mechanisms in the coupling wave-tide-surge interaction have positive impact on sea level, and wave-current interaction bottom stress mechanism show negative impact on sea level. The comprehensive effects of three main physical mechanisms show positive net impact on seal level and increase it by as much as 25 cm. We show that the wave heights and sea levels simulated by the coupled wave-tide-surge model agree better with the measured values compared to uncoupled model results, particularly for peak storm conditions.