青岛版数学教科书中数学文化的体现

来源 :中学数学杂志(初中版) | 被引量 : 0次 | 上传用户:txl8909
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  青岛版义务教育实验教科书数学(7~9年级)既体现数学的科学性和应用性,又体现数学科学中蕴涵的文化.在编写教科书时,把数学文化定位于让学生通过数学文化了解数学的文化价值,知道数学与人类文化息息相关;学习数学家的精神,为创造人类文明发愤学习;了解数学发展的历程,体会数学的发生、发展的过程.为了充分发挥数学课程的文化传播功能,该套教科书结合课程内容进一步挖掘其文化内涵,结合课程知识向学生展现中国古代数学及其理念、思想、方法在人类文化发展中的重要作用和地位,通过生动活泼的形式使学生感受丰富的数学文化熏陶.
  
  1 以章头图为载体,彰显数学文化
  
  青岛版数学教科书一改过去教科书抽象的味道,在每一章均配有“大器十足”的章头图,这些章头图和“情境导航”像一道绚丽的风景线,把教材点缀得格外柔美,在给人以艺术享受的同时,也使人们感悟到画面蕴涵着数学与自然的关系,体会到数学文化的魅力,从而激发学生学习数学的兴趣.
  案例1 七年级上册“第8章一元一次方程”的章头图根据我国明代数学家吴敬算诗的画境,借助了杭州西湖及雷峰塔的夜景.配合章头图的“情境导航”提供了吴敬所著《九章算法比类大全》中的一首诗“巍巍宝塔高七层,点点红灯倍加增.灯共三百八十一,请问顶层几盏灯?”这是一个需要利用一元一次方程求解的问题,让学生感悟到问题中蕴含的方程思想,学生学习数学的兴趣也油然而生.
  案例2 八年级上册“第1章轴对称与轴对称图形”的章头图有两部分组成,下方是我国六个民族的标志图案,背景是一幅广西壮族自治区著名风景区桂林山水(漓江)图画.该章头图与“情境导航”体现出该章的主要内容——轴对称与镜面对称.学生在欣赏图片的同时,不仅能从中感悟到轴对称图形、关于一条直线成轴对称的两个图形以及镜面对称现象在现实生活中是大量存在的,而且能得到数学美的享受,这正是本章章头图数学文化的价值所在.
  案例3 八年级上册“第5章实数”的章头图选自第24届国际数学家大会的会标.第24届国际数学家大会2002年8月在北京举行,作为第一个在发展中国家举行的会议而载入史册.这次大会的会标取材于我国古代数学家赵爽的“勾股圆方图”,“勾股圆方图”表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.教学中结合章头图,向学生介绍有关“勾股圆方图”的史料以及我国数学家的成就,使学生领略到了数学的美妙和神奇,也激发了学生的民族自豪感.
  
  2 以数学史为素材,渗透数学文化
  
  数学文化的内涵不仅表现在其知识本身,还存在于它的历史之中.青岛版教科书中的数学史料非常丰富,内容涉及数学家的生平及其成就、数学事件和成果、重要数学方法的起源、经典的历史名题、数学家的轶闻趣事等,力求使数学学习过程成为名副其实的文化传播过程.
  2.1 本套教科书把数学的发展置于人类历史的大背景之下,对于古希腊数学家泰勒斯、毕得哥拉斯、希伯索斯、欧几里得、阿基米德、丢番图以及近代西方数学家韦达、牛顿、伽利略、笛卡尔、欧拉、莱布尼兹、拉普拉斯等重要人物作了介绍.本套教科书涉及到的中国数学家有刘徽、祖冲之、赵爽、贾宪、程大位、吴敬等,使学生不仅能学到数学家们的治学严谨、思考慎密的思维品质,同时也使学生初步感受数学在不同文化背景下的内涵.
  2.2 本套教科书注意结合相关知识向学生介绍历史上数学进展中的曲折历程,展现古代数学及其理念、思想、方法在人类文化发展中的重要作用和地位.教科书通过这些丰富多彩内容的呈现,丰富学生对数学发展的整体认识,体会数学在人类发展历史中的作用,使学生了解数学知识的产生与发展首先源于人类生活的需要,使学生感受古代数学文化传统在整个人类文化中的地位和贡献,感悟其中的数学思想方法以运用于自己的数学学习之中.从而激发学生学习数学的积极性和学好数学的使命感.
  现将本套教科书阅读材料中的数学史料列表如下:
  
  3 以用数学为触角,体现数学文化
  
  以数学应用为触角的数学文化渗透,将数学问题赋予生活内涵,一方面深化了学生所学的数学知识,另一方面增强了学生关注社会和关注人类发展的意识.在问题解决中,学生感到数学离生活很近,生活中包含着数学,数学深入到生活的每个细微之处.学生通过对这些源自生活实际问题的研究,感受数学的应用价值,有助于学生正确看待与欣赏丰富多彩的数学文化,实现多元文化下的数学教育目标.
  3.1 本套教科书正文中所选择的素材来源于学生所熟悉的自然、社会与科学中的现象和实际问题,并且能反映一定的数学价值.如,七年级上册第4章“数据的收集与简单的统计图”中,土地荒漠化问题、游行方队的人数问题以及电视机屏幕尺寸的公制和英制的换算等问题,它们不但反映出一定的数学价值,而且极具挑战性和趣味性.选取这些实例作为认识的背景,不仅有助于激发学生的求知欲,形成强烈的学习动机,而且可以使学生感受数学与现实世界的密切联系,从而了解数学的来源、数学的应用、数学的价值和数学的发展,增强应用数学的意识.
  3.2 本套教科书还十分注重结合课程内容配备数学应用的阅读材料.如,七年级下册第161页“广角镜”中的“美丽的图案设计”;八年级上册第21页“小资料”中“指纹”,八年级上册第90页“小资料”中“全国土地使用情况”;九年级下册第28页“广角镜”中“漫谈抛物线”,九年级下册第101页“智趣园”中“葛藤有多长”等阅读资料的素材来源于自然、社会与科学中的现象和问题,反映一定的数学价值.学生感受到了现实生活中存在如此丰富的数学知识,形成正确的数学观,学会从数学的角度思考问题,用数学的方法探索世界的奥秘!这也正是数学文化的价值所在!
  
  4 以智力活动为契机,激活数学文化
  
  做数学游戏、解数学趣题是一种大众化的智力活动,体现了一种数学文化.青岛版数学教科书中引进了一些游戏素材,为一线教师的教学提供了广阔的创新空间.这种“随风潜入夜,润物细无声”的潜移默化的智力活动,可以让学生逐渐认识到数学文化的难得魅力,并逐步使学生养成勤于动脑、善于分析的习惯,学会用数学文化的视角分析问题、解决问题.
  案例4 七年级上册第62页“智趣园”中的设计了“翻硬币的游戏”,游戏的解决方案是借助-1的乘方,道理也很简单“-1的偶次幂等于1,而-1的奇次幂都等于-1”.游戏的奇妙在于使学生感到数学的神奇,这也正是数学文化的魅力所在!
  案例5 九年级上册第31页“广角镜”介绍了“七巧板”,七巧板也称“七巧图”、“智慧板”,是一种智力游戏,对于充实人们的数学文化底蕴有着非常现实的意义.利用七巧板可拼成许多图形(1600种以上),如三角形、平行四边形、不规则多边形,也可以把它拼成各种人物、形象、动物、桥、房、塔等等,也可以拼出一些中、英文字母.利用七巧板还可以阐明许多重要的几何关系,其原理便是古算术中的“出入相补原理”.
  案例6 九年级下册第101页“智趣园”中给出了一道我国古代趣题“葛藤有多长”.解决这一问题,需要把枯木看作是一个圆柱体,侧面展开图是并排而放的7个矩形,然后利用勾股定理求出葛藤的长度.问题的解决既体现了数学建模思想,也体现了数学中的转化思想,这正是数学文化所潜在的教育功能.
  
  5 以数学美为视角,体验数学文化
  
  数学教学还要注重对学生进行数学美的教育,通过数学美的教育挖掘数学知识的文化内涵,使学生感受丰富的数学文化,让学生享受数学的美,享受美的数学,让学生的素质得到全面发展. 青岛版数学教科书提供了许多对学生进行美学教育的素材,这也是该套教书的亮点之一.
  案例7 七年级上册第15页“智趣园”中的“以直‘绣’曲”,文中给出的“梅花盛开”、“群鱼争食”等图案,竟然是由一条条线段绣成的,这种美妙的感觉往往来自“意料之外”但在“情理之中”的事物.在欣赏美丽图案的同时,使学生感悟到“直”与“曲”是相互对立的,但在一定条件下,“直”可以转化为“曲”;从局部看,“曲”也可以用“直”来代替.由此使学生体验到数学中的对立统一观点.
  案例8 八年级上册第23页“智趣园”中的“奇妙的对称”,源自于著名物理学家保罗
其他文献
摘要:网络文化产业是传统文化产业网络化模式与新兴网络文化相结合的产物。与其他产业一样,网络文化产业同样存在着限制竞争的一系列行为,并有着愈演愈烈的趋势。面对如此状况,美国经验为我们提供了一定的经验。本文拟从美国经验出发,对我国的反垄断执法提供一定的意见。  关键词:限制竞争;网络文化;执法理念  一、现状  网络文化产业是传统文化产业网络化模式与新兴网络文化相结合的产物。一如其他产业,网络文化产业
本文论述了清华新月诗人群的定义,前后期新月诗人对中国现代新诗格律发展作出的贡献,朱湘、闻一多、陈梦家、林徽回诗的特点;探讨了为什么在那个时代清华出现那么多有影响的诗人