论文部分内容阅读
教学内容:苏教版小学数学四年级下册《倍数和因数》
教学目标:
1.通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义
2.培养学生观察、分析、概括能力,培养有序思考能力。
3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心。
教学重点:理解倍数和因数的意义,探索求一个数的倍数和因数的方法。
教学难点:发现一个数的倍数和因数的特征,探求并掌握求一个数的所有因数的方法。
教学准备:每桌准备12个一样大小的正方形。
教学过程:
一、师生互动,引入新课
师:同学们,今天这节课,我们一起学习《倍数和因数》(板书课题)。
看了这个课题,你想了解哪些内容?
生:什么是倍数和因数?
怎么找倍数和因数?
学习倍数和因数有什么用?
(师相应标记板书)
师:接下来我们就围绕同学们提出的问题一起探究发现。
二、操作感悟,形成概念
1.操作感知,初步理解概念
(1)师:请看大屏幕,用12个同样大小的正方形拼成一个长方形。想一想,每排摆几个,摆了几排?有几种不同的摆法?请同学们动手摆一摆,并用乘法算式把自己的摆法表示出来,完成作业纸上的活动一。
(2)学生操作并用乘法算式记录摆法。
(3)资源收集并交流。
师:谁来说说看,你是怎么摆的,乘法算式是什么?
生说摆法、算式。预设:4×3=126×2=1212×1=12
师:大家可别小看了这些算式,今天我们要研究的内容就在这里。
请一学生说,同时课件出示:4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
师:你真会学习。现在,大家知道什么是倍数和因数了吗?
2.问题推进,进一步理解概念。
试一试:出示6×2=1212×1=125×3=1521÷7=33+4=7
师:老师这里有一些算式,你能不能也来说说谁是谁的倍数、谁是谁的因数呢?
自己先轻轻地说,再说给你的同桌听。
学生自己练习说。
师:谁先来试试?
指名说。
①6×2=12
师追问:能不能这样说:6和2是因数,12是倍数?
强调:我们一定要说清楚,谁是谁的倍数,谁是谁的因数。
②12×1=12
师:12是12的倍数,12是12的因数,这里说到的4个12,到底指乘法算式里的哪一个12呢?谁来边指边说?
师:看来一个数本身——既是自己的倍数,也是自己的因数。
③21÷7=3
师:你是怎么看出来的呀?
生:可以想到乘法算式7×3=21
师:乘法和除法可以相互转化,原来我们不仅能在乘法算式中找到一个数的倍数和因数,也能在除法算式中找到一个数的倍数和因数。
④3+4=7
师:这道算式表示的是加法关系,不存在我们所说的倍数因数关系。
三、探索方法,发现特征
1.探索求一个数因数的方法。
交流:请看大屏幕,老师这里有几位同学的作业,仔细观察,18的因数都找全了吗?
师:先来比一比第一份和第二份作业,谁来说一说?
生:第一位同学没有找全。
师:第二位同学是不是找全了?那我们请第二位同学说说看,我们怎样能做到不重复、不遗漏呢?你是怎么找的?
生1:我是一对一对地找的。想乘法算式,先想(1)×(18)=18,再想(2)×(9)=18……
生2:我是想的除法算式。先用18÷(1)=(18),然后用18÷(2)=(9)……
师:无论是乘法还是除法算式,从1乘起(除起),找的时候都是一对一对找的,都是不错的方法。
(3)师:请试着用这样的方法也来找找15、16的因数。完成作业纸上活动二的第2题。(板书:试一试)
学生独立找15、16的因数。
师:谁来说说看你是怎么找的,找到了哪些?
学生回答。
2.发现一个数因数的特征。
(1)师:请大家观察一下这几个数的因数,你有什么发现?
指名学生回答。
预设:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
(2)方法指导。
师:这只是我们观察了几个两位数的因数发现的因数特征,最多只能算是猜想。要想说明这个猜想是正确的,我们可以再举几个不同范围的自然数(如一位数、三位数),也来找一找它们的因数,看看它们的因数是否也有同样的特征。
(3)学生扩大范围举例验证。
(4)交流验证情况,尤其关注有没有反例。
指名几位同学说说自己验证的情况。
(5)归纳得出结论。
师:谁来试着小结一个数的因数具有什么特征?
生小结:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
3.方法回顾。
师:刚才我们经历了“找一找”“试一试”“想一想”这几个过程对因数进行了研究,想一想接下来我们会研究什么?
4.迁移方法,研究倍数。
(1)师:接下来我们就按这样的方法来研究倍数。请同学们试着找一找3、2、5的倍数,完成作业纸上活动三。
(2)学生独立完成。
教师呈现资源,组织交流。(预设:缺本身,缺省略号,比较完整的。)
师:比一比这三位同学的作业,你更喜欢谁的?为什么?
(3)师:有的同学写得又对又快,还有序,有什么好方法吗?
学生交流并小结:要找一个数的倍数,只要把这个数和非0自然数依次相乘。
(4)组织交流:
师:与因数的特征比一比,一个数的倍数又有怎样的特点呢?
指名学生回答。相互补充。
小结:我们发现了:一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。同学们如果有兴趣,课后可以举一些其他范围的自然数去验证一下。
师:大家很了不起,根据研究因数的内容和过程,自己尝试着研究了倍数,这是大家爱动脑、不断思考的结果。
四、全课总结,拓展延伸
师:通过今天这节课的学习,你有什么收获?现在你能回答课开始提出的问题了吗?相互说一说。
学生交流反馈。
师:一个个数看上去非常枯燥,可是如果对它进行深入地研究,又会发现它们就像人与人之间一样,有着不可割裂的联系,相互依存,隐藏着无穷的乐趣。希望同学们在以后的学习中,也能像今天这样积极动脑,主动探索,在数学学习中增长智慧,享受快乐!
教学目标:
1.通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义
2.培养学生观察、分析、概括能力,培养有序思考能力。
3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心。
教学重点:理解倍数和因数的意义,探索求一个数的倍数和因数的方法。
教学难点:发现一个数的倍数和因数的特征,探求并掌握求一个数的所有因数的方法。
教学准备:每桌准备12个一样大小的正方形。
教学过程:
一、师生互动,引入新课
师:同学们,今天这节课,我们一起学习《倍数和因数》(板书课题)。
看了这个课题,你想了解哪些内容?
生:什么是倍数和因数?
怎么找倍数和因数?
学习倍数和因数有什么用?
(师相应标记板书)
师:接下来我们就围绕同学们提出的问题一起探究发现。
二、操作感悟,形成概念
1.操作感知,初步理解概念
(1)师:请看大屏幕,用12个同样大小的正方形拼成一个长方形。想一想,每排摆几个,摆了几排?有几种不同的摆法?请同学们动手摆一摆,并用乘法算式把自己的摆法表示出来,完成作业纸上的活动一。
(2)学生操作并用乘法算式记录摆法。
(3)资源收集并交流。
师:谁来说说看,你是怎么摆的,乘法算式是什么?
生说摆法、算式。预设:4×3=126×2=1212×1=12
师:大家可别小看了这些算式,今天我们要研究的内容就在这里。
请一学生说,同时课件出示:4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
师:你真会学习。现在,大家知道什么是倍数和因数了吗?
2.问题推进,进一步理解概念。
试一试:出示6×2=1212×1=125×3=1521÷7=33+4=7
师:老师这里有一些算式,你能不能也来说说谁是谁的倍数、谁是谁的因数呢?
自己先轻轻地说,再说给你的同桌听。
学生自己练习说。
师:谁先来试试?
指名说。
①6×2=12
师追问:能不能这样说:6和2是因数,12是倍数?
强调:我们一定要说清楚,谁是谁的倍数,谁是谁的因数。
②12×1=12
师:12是12的倍数,12是12的因数,这里说到的4个12,到底指乘法算式里的哪一个12呢?谁来边指边说?
师:看来一个数本身——既是自己的倍数,也是自己的因数。
③21÷7=3
师:你是怎么看出来的呀?
生:可以想到乘法算式7×3=21
师:乘法和除法可以相互转化,原来我们不仅能在乘法算式中找到一个数的倍数和因数,也能在除法算式中找到一个数的倍数和因数。
④3+4=7
师:这道算式表示的是加法关系,不存在我们所说的倍数因数关系。
三、探索方法,发现特征
1.探索求一个数因数的方法。
交流:请看大屏幕,老师这里有几位同学的作业,仔细观察,18的因数都找全了吗?
师:先来比一比第一份和第二份作业,谁来说一说?
生:第一位同学没有找全。
师:第二位同学是不是找全了?那我们请第二位同学说说看,我们怎样能做到不重复、不遗漏呢?你是怎么找的?
生1:我是一对一对地找的。想乘法算式,先想(1)×(18)=18,再想(2)×(9)=18……
生2:我是想的除法算式。先用18÷(1)=(18),然后用18÷(2)=(9)……
师:无论是乘法还是除法算式,从1乘起(除起),找的时候都是一对一对找的,都是不错的方法。
(3)师:请试着用这样的方法也来找找15、16的因数。完成作业纸上活动二的第2题。(板书:试一试)
学生独立找15、16的因数。
师:谁来说说看你是怎么找的,找到了哪些?
学生回答。
2.发现一个数因数的特征。
(1)师:请大家观察一下这几个数的因数,你有什么发现?
指名学生回答。
预设:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
(2)方法指导。
师:这只是我们观察了几个两位数的因数发现的因数特征,最多只能算是猜想。要想说明这个猜想是正确的,我们可以再举几个不同范围的自然数(如一位数、三位数),也来找一找它们的因数,看看它们的因数是否也有同样的特征。
(3)学生扩大范围举例验证。
(4)交流验证情况,尤其关注有没有反例。
指名几位同学说说自己验证的情况。
(5)归纳得出结论。
师:谁来试着小结一个数的因数具有什么特征?
生小结:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
3.方法回顾。
师:刚才我们经历了“找一找”“试一试”“想一想”这几个过程对因数进行了研究,想一想接下来我们会研究什么?
4.迁移方法,研究倍数。
(1)师:接下来我们就按这样的方法来研究倍数。请同学们试着找一找3、2、5的倍数,完成作业纸上活动三。
(2)学生独立完成。
教师呈现资源,组织交流。(预设:缺本身,缺省略号,比较完整的。)
师:比一比这三位同学的作业,你更喜欢谁的?为什么?
(3)师:有的同学写得又对又快,还有序,有什么好方法吗?
学生交流并小结:要找一个数的倍数,只要把这个数和非0自然数依次相乘。
(4)组织交流:
师:与因数的特征比一比,一个数的倍数又有怎样的特点呢?
指名学生回答。相互补充。
小结:我们发现了:一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。同学们如果有兴趣,课后可以举一些其他范围的自然数去验证一下。
师:大家很了不起,根据研究因数的内容和过程,自己尝试着研究了倍数,这是大家爱动脑、不断思考的结果。
四、全课总结,拓展延伸
师:通过今天这节课的学习,你有什么收获?现在你能回答课开始提出的问题了吗?相互说一说。
学生交流反馈。
师:一个个数看上去非常枯燥,可是如果对它进行深入地研究,又会发现它们就像人与人之间一样,有着不可割裂的联系,相互依存,隐藏着无穷的乐趣。希望同学们在以后的学习中,也能像今天这样积极动脑,主动探索,在数学学习中增长智慧,享受快乐!