论文部分内容阅读
协同模式识别是一种有着抗噪声、抗缺损、强鲁棒性等诸多优良特性的模式识别方法,其中原型模式的选取对模式识别结果有着决定性的作用,其选取直接决定着模式识别的结果和效果,各种方法中信息反馈修正的方法能获得较好的效果,但易出现信息饱和的问题;提出了一种粒子群优化修正力度的处理机制,能有效改善此问题,获得最优原型;将改进的算法应用于纹理和鼻咽癌细胞图像识别,结果表明,该方法能有效地提高协同神经网络的识别率和可靠性,且识别速度也有提高。