输入受限下自主水下航行器路径跟踪的级联控制

来源 :控制与决策 | 被引量 : 0次 | 上传用户:blameoper
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对自主水下航行器的路径跟踪控制问题,首先,将基于路径坐标系和虚拟向导概念建立的跟踪误差方程转换成一种新的级联系统表示形式,该级联系统由一个位置误差名义系统和与之级联的速度和航向误差子系统组成,与常规控制器求解相比,解耦了位置误差与速度和航向误差子系统;其次,利用滤波反步法对速度和航向子系统进行求解,避免了反步法对虚拟控制量解析求导引起的“计算膨胀”的不足,并通过构造辅助系统对滤波误差和输入受限下的控制量残差进行补偿,基于李雅普诺夫稳定性理论保证了速度和航向子系统的有界收敛;再次,通过级联系统理论证明闭环跟踪误差系统所有信号的一致最终有界;最后,通过仿真实验验证所提级联控制的有效性.
其他文献
演化博弈论(EGT)基于有限理性假设且更加贴近现实,近年来已在众多领域得到了初步应用.基于此,本文关注一类较为常见的三方多策略式演化博弈系统,尝试通过理论分析总结其长期演化稳定均衡(ESE)特性,并进行仿真验证研究.首先,研究了一般情形下的三方两策略对称与非对称演化博弈系统;然后,将其扩展到更复杂的三方三策略非对称演化博弈类型,并对其长期ESE特性进行了理论分析与动态仿真验证;进一步,对通用三方n-策略(n>1)非对称演化博弈的建模思路进行了阐述与总结,给出其收敛迭代的计算方法.研究过程中详细定义了各类演
实际工程中存在各种多输入系统,比如用于大型雷达和火炮的多驱动伺服系统、多自由度机械臂系统等,针对这些系统的H∞控制研究具有重要意义.同时,近似动态规划方法已被广泛用于求解各类最优控制问题,但并未涉及多输入系统的H∞控制.本文应用近似动态规划方法,设计多输入非线性系统的H∞控制器.应用基于强化学习的神经网络在线逼近非线性Hamilton–Jacobi–Isaacs(HJI)方程的解,引进一种新的自适应律更新神经网络权值,然后直接用于H∞控制器的设计,并证明了权值的收敛性和系统的闭环稳定性,保证了多输入系统受
为无人机规划一条从起点出发到达指定目标点的航线是实现无人机各种应用的重要前提.飞行过程中,无人机应具备对于各种动态变化快速响应并重新规划航线的能力.针对多旋翼无人机在飞行过程中可能遇到的各种动态变化,研究其在离散城市环境下的在线航线规划问题.首先,建立离散环境模型,并基于此模型定义无人机飞行规则;随后,建立无人机航线规划模型,包括对航点的约束条件及航线规划的指标;其次,将各种动态变化按照其对无人机的不同影响进行分类,分为固定禁飞区、合作无人机、非合作无人机3类,并针对不同种类动态变化特点,分别提出重新规划
为解决实际海况下全驱动船舶的动力定位控制任务存在参数不确定、模型结构不确定和通信资源限制等问题,本文提出一种具有事件触发输入的鲁棒自适应动力定位控制算法.该算法采用径向基函数神经网络对系统模型不确定进行逼近,同时针对通信带宽受限问题,设计了一种具有事件触发机制的执行器输入,降低了控制器和执行器之间的信道占用.此外,该算法还解决了状态变量与执行器增益不确定性之间的强耦合问题,并且设计了在线更新的自适应参数去补偿执行器增益不确定,以确保船舶能够稳定执行动力定位任务.利用Lyapunov稳定性理论证明了闭环控制
永磁同步直线电机(permanent magnet linear synchronous motor,PMLSM)目前多被应用于直线牵引系统,例如轨道交通、无绳电梯等.传统的永磁同步直线电机预测控制主要考虑有限控制集模型预测控制(finite-control-set model predictive control,FCS–MPC),在一个系统采样周期从备选的开关状态中选择一个相对最优的开关状态送入逆变器中.该方法的计算量通常随着预测步长的增加呈几何增长,因而限制了其广泛使用.本文针对PMLSM提出一种基
乳腺癌具备易于复发性和高死亡率等特点,已成为女性癌症患者死亡的重要原因.乳腺癌的早期诊断可增加癌症治愈的可能性,因此,提高早期诊断的准确性尤为重要.传统的早期诊断主要依靠人类经验,通过分析临床或检查数据来判断乳腺癌,无法保证足够的准确性.许多研究人员提出了各种机器学习方法,以提高预测的准确性和效率.但现有的算法计算复杂性很高,并且难以从多种算法中直接确定最适合的算法.本文尝试了10种流行的分类算法,比较了它们之间的差异,并应用了量子支持向量机来加速计算过程.数值实验显示支持向量机和人工神经网络的预测效果最
为解决粒子群优化算法中种群多样性与收敛性间的矛盾,提出一种具有重组学习和混合变异的动态多种群粒子群优化算法.该算法动态划分多种群并融入重构粒子作为引导因子,在增加种群多样性的同时保留优秀粒子的空间信息;在算法执行阶段对最优个体施加混合变异,基于时变概率实施反向学习策略或者邻域扰动操作,帮助粒子快速跳出局部困境,加强对附近区域内的精细搜索.基于14个多类型标准测试函数,并与其他的改进粒子群算法进行对比,验证了几种改进措施的有效性和叠加影响.为进一步探究概率性混合变异策略的敏感性,对变异方式及参数设置进行仿真
构建双渠道和线上到线下(O2O)两种模式下的供应链博弈模型,研究Showrooms效应影响下的供应链定价和渠道模式策略选择问题.研究结果表明:无论何种渠道模式,Showrooms效应和线下展厅服务使得制造商和零售商提高线上和线下渠道的零售价格;双渠道模式下制造商将降低批发价格,而O2O模式下制造商不一定降低批发价格.线下展厅服务和Showrooms效应可以增加线上、线下渠道和总需求量,实现零售商利润增加,零售商会提供线下展厅服务并愿意接受O2O模式.只有当Showrooms效应较小时,制造商选择O2O模式
我国建筑能耗约占社会总能耗的30%,其中集中式暖通空调系统能耗约占一半以上.为提高节能效率,本文提出基于负荷预测的空调冷冻站系统神经网络预测控制策略.本文采用神经网络作为优化反馈控制器,将满足负荷需求和系统能效比需求作为优化目标,将变分法和随机梯度下降法相结合,对神经网络权值进行滚动优化,既能解决传统变分法由开环控制引发的对随机干扰和不确定性敏感的问题,又可避免基于动态规划的非线性优化算法的“维数灾”问题.本文以北京某国企科研楼的空调系统为研究对象,实验结果表明,本文所提出的神经网络预测控制策略与PID控