论文部分内容阅读
Fourteen wild species of different sections in the genus Arachis and 24 accessions of the AABB allotetraploid A. hypogaea (cultivated peanut) from several countries which belong to different botanical varieties, were analyzed by SSR and AFLP marker systems. The assay-units per system needed to distinguish among all the tested accessions were at least five for SSR or two for AFLP. The genetic distance detected by the SSR markers ranged from 0.09 to 0.95, and the mean was 0.73; and the genetic distance detected by the AFLP markers ranged from 0.01 to 0.79 with an average of 0.42. All the tested peanut SSR primer pairs were multilocus ones, and the amplified fragments per SSR marker in each peanut genome ranged from 2 to 15 with the mean of 4.77. The peanut cultivars were closely related to each other, and shared a large numbers of SSR and AFLP fragments. In contrast, the species in the genus Arachis shared few fragments. The results indicated that the cultivated peanut (A. hypogaea L.) varieties could be partitioned into two main groups and four subgroups at the molecular level, and that A. duranensis is one of the wild ancestors of A. hypogaea. The lowest genetic variation was detected between A. cardenasii and A. batizocoi, and the highest was detected between A. pintoi and the species in the section Arachis. The relationships among the botanical varieties in the cultivated peanut (A. hypogaea L.) and among wild species accessions in section Arachis and those in other sections in the genus Arachis were discussed.
Fourteen wild species of different sections in the genus Arachis and 24 accessions of the AABB allotetraploid A. hypogaea (cultivated peanut) from several countries which belong to different botanical varieties, were analyzed by SSR and AFLP marker systems. The assay-units per system needed to distinguish among all the tested accessions were at least five for SSR or two for AFLP. The genetic distance detected by the SSR markers ranged from 0.09 to 0.95, and the mean was 0.73; and the genetic distance detected by the AFLP markers ranged from 0.01 to 0.79 with an average of 0.42. All the tested peanut SSR primer pairs were multilocus ones, and the amplified fragments per SSR marker in each peanut genome ranged from 2 to 15 with the mean of 4.77. The peanut cultivars were closely related to each other , and shared a large numbers of SSR and AFLP fragments. In contrast, the species in the genus Arachis shared few fragments. The results indicates that the cultivated peanut (A. hypogaea L.) v arieties could be partitioned into two main groups and four subgroups at the molecular level, and that A. duranensis is one of the wild ancestors of A. hypogaea. The lowest genetic variation was detected between A. cardenasii and A. batizocoi, and the highest was detected between A. pintoi and the species in the section Arachis. The relationships among the botanical varieties in the cultivated peanut (A. hypogaea L.) and among wild species accessions in section Arachis and those in other sections in the genus Arachis were discussed .