论文部分内容阅读
基于无网格自然邻接点Petrov-Galerkin法,提出了复杂轴对称动力学问题求解的一条新途径。几何形状和边界条件的轴对称特点,将原来的空间问题转化为平面问题求解。计算时仅仅需要横截面上离散节点的信息,无论积分还是插值都不需要网格。自然邻接点插值构造的试函数具有Kronecker delta函数性质,因此能够直接准确地施加本质边界条件。有限元三节点三角形单元的形函数作为权函数,可以减少域积分中被积函数的阶次,提高计算效率。数值算例结果表明,所提出的方法对求解轴对称动力学问题是行之有效的。