论文部分内容阅读
针对传统手势识别中用肤色分割手部区域效果的局限性,采用Kinect获取深度信息来分割手掌,能得到较好的效果。对手掌轮廓进行多边形逼近,将凸包点作为候选指尖点。利用非零像素(白)到最近零像素的距离提取掌心,用线性回归动态调整阈值圆半径,将无用凸包点过滤,实现指尖点的准确提取。在分类识别中,将图像的Hu矩和指尖点个数组合起来,作为复合手势特征,导入KNN分类器中,实现手势识别。实验证明,基于复合特征和动态阈值圆法的手势识别算法具有较好的识别率和实时性。