论文部分内容阅读
为了在数字芯片上以低硬件复杂度实现Polar码的译码算法,对Polar码连续消除(SC)译码算法接收符号和SC译码输入的初始比特对数似然比(LLR)的量化问题进行了研究.分析了接收符号量化区间和量化比特数对Polar码SC译码性能的影响.对译码输入初始LLR,从均匀量化和非均匀量化两方面,并对非均匀量化采用了归一化非均匀量化和小数非均匀量化2种方式,分析了初始LLR的量化对Polar码SC译码性能的影响.仿真结果表明,分别对接收符号和初始LLR采用区间[-4,4]和区间[-20,20]上的6 bit均匀量化,就可以使Polar码SC译码算法的误比特率(BER)性能损失在小于0.1 d B的同时,具有更简单的硬件实现复杂度.
In order to implement the Polar code decoding algorithm with low hardware complexity on the digital chip, the quantization of the initial bit LLR of the received symbol of the SC decoding algorithm and the SC decoding input of the Polar code The impact of the quantization interval of received symbols and the number of quantization bits on the decoding performance of Polar SC is analyzed.For the initial LLR decoding input, both the uniform quantization and the non-uniform quantization are used to normalize the non-uniform quantization The non-uniform quantization and the fractional non-uniform quantization are used to analyze the influence of the initial LLR quantization on the decoding performance of Polar codes. The simulation results show that the receiver [4, 4] and the interval [-20,20], the 6 bits quantization can make the bit error rate (BER) performance of the Polar code SC decoding algorithm less than 0.1dB, at the same time, it has simpler hardware implementation complexity.