论文部分内容阅读
本文研究带波动算子的非线性薛定谔方程在无界区域上的数值解.在无界区域上引入人工边界,基于算子分裂方法的统一方法在人工边界上构造合理的人工边界条件,将无界区域上的原问题简化为有界计算区域上的初边值问题,利用有限差分方法进行数值离散.构造质量泛函分析了简化初边值问题的稳定性.最后,通过数值算例验证方法的有效性.