论文部分内容阅读
摘要:数学课堂教学中问题解决是教学的中心,通过创设情境,引导学生自主学习而达到问题解决。
关键词:创设情境;问题解决;能力培养
【中图分类号】G750
现今随着新课改的全面推进,地处甘肃南部的少数民族地区数学“创新精神与实践能力”的培养已成为素质教育的核心。问题解决能力就是“创新精神与实践能力”在数学教育领域的具体体现,是一种重要的数学素质。本课题力图通过教学实践研究,寻找“问题解决”能力培养与课程教材知识体系学习之间的互补与平衡,形成稳定简明的教学理论框架及其操作性较强的数学课堂教学模式,促进学生的数学意识、逻辑推理、信息交流、思维品质等数学素质的提高,为学生的自主学习、发展个性打下良好基础。
(一) “问题解决”课堂教学模式的理论框架:
(1) 在一定的问题情境背景下,学生可以利用必要的学习材料,借助教师和同伴的帮助,通过意义建构主动获得知识。
(2) 问题解决能力的培养为学生学习数学知识提供动力,而系统的数学知识体系为问题的解决提供保障。问题解决能力的培养与数学知识体系的建构两者之间的互补与平衡有助于学生认知结构的完善。
(3) 学生和教师是教学活动中能动的角色和要素,师生关系是互为主体、互相依存、互相配合的,师生双方的主体性在教学过程中都应得到发展和发挥。
(4) 学生主体作用主要体现在学生的学习活动过程中。
(5) 教师的主体作用主要体现在对教学活动进行科学认识的过程中,教学过程中教师的主导是发挥主体作用的具体表现形式。
(二) “问题解决”课堂教学模式的功能目标:
学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(三) 数学问题解决能力培养目标:
1. 会审题——能对问题情境进行分析和综合。
2. 会建模——能把实际问题数学化,建立数学模型。
3. 会转化——能对数学问题进行变换化归。
4. 会归类——能灵活运用各种数学思想和数学方法进行一题多解或多题一解,并能进行总结和整理。
5. 会反思——能对数学结果进行检验和评价。
6. 会编题——能在学习新知识后,在模仿的基础上编制练习题;能把数学知识与社会实际联系起来,编制数学应用题。
(四) “问题解决”课堂教学模式的操作程序:
从生活情境入手,或者从数学基础知识出发,把需要解决的问题有意识地、巧妙地寓于符合学生实际的基础知识之中,把学生引入一种与问题有关的情境之中,激发学生的探究兴趣和求知欲。
创设问题情境的主要方法:(1)通过语言描述,以讲故事的形式引导学生进入问题情境;(2)利用录音、录象、电脑动画等媒体创造形象直观的问题情境;(3)学生排练小品,再现问题情境;(4)利用照片、图片、实物或模型;(5)组织学生实地参观。
1. 尝试引导,把数学活动作为教学的载体。
学生在尝试进行问题解决的过程中,常常难以把握问题解决的思维方向,难以建立起新旧知识间的联系,难以判断知识运用是否正确、方法选择是否有效、问题的解是否准确等,这就需要教师进行启发引导。
常用启发引导方式:(1)重温与问题有关的知识。(2)阅读教材,学习新概念。(3)引导学生对问题进行联想、猜测、类比、归纳、推理等。(4)组织学生开展小组讨论和全班交流。
2. 自主解决,把能力培养作为教学的长远利益。
让学生学会并形成问题解决的思维方法,需要让学生反复经历多次的“自主解决”过程,这就需要教师把数学思想方法的培养作为长期的任务,在课堂教学中加强这方面的培养意识。
常用方式:(1)对于比较简单的问题,可以让学生独立完成,使学生体会到运用数学思想方法解决问题的快乐。(2)对于有一定难度的问题,应该让学生有充足的时间独立思考,再进行尝试解决。(3)对于思维力度较大的问题,应在学生独立思考、小组讨论和全班交流的基础上,通过合作共同解决。
3. 练习总结,把知识梳理作为教学的基本要求。
根据学生的认知特点,合理选择和设计例题与练习,培养主动梳理、运用知识的意识和数学语言表达能力,达到更好地掌握知识及其相互关系和数学思想方法的目的。
常用练习形式:(1)例题变式。(2)让学生进行错解剖析。(3)让学生根据要求进行命题,相互考察。
总结是把数学知识与技能通过“同化”或“顺应”的机能“平衡”认知结构的必要步骤。适时组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用。
常用总结方式:(1)在概念学习后,以辨析、类比等方式进行小结。(2)对解题过程进行反思。(3)从数学知识、数学思想、学习的启示三个层面进行课堂小结。(4)布置阅读、练习和实践等不同形式的课外数学活动。(5)让学生撰写考后感、学习心得、专题小论文。(6)指导学生开展研究性课题研究。
(五) 数学问题解决能力培养的课堂教学评价标准:
1. 教学目标的确定:
(1)知识目标的确定应重视数学基础知识和基本技能;(2)能力目标的确定应强调数学思想方法的揭示和培养;(3)情感目标的确定应注意学习兴趣的激发、良好人际关系的建立、科学态度和创新精神的培养等等。
2. 教学方法的选择:
采用探究式、启发式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识、基本技能和基本数学思想方法,培养积极探索和团结协作的科学精神。 3. 问题的选择:
合适的问题至少应有如下特点之一:
(1) 重视情景应用,即给出一种实际情景和需求,以解决现实困难为标志。
(2) 具有探究性,即问题不一定有解,答案不必唯一,条件可以变化,试验方案可以自己设计,允许与别人讨论等等。
(3) 非形式化,即不是教材内容的简单模仿,不是靠熟练操作就能完成的,需要较多的创造性。
4. 师生双主体意识的体现:
(1) 在课堂教学活动过程中,学生主动参与学习意识强,能主动发现和分析问题,能联系新旧知识,能在独立思考的基础上,与同伴开展交流、讨论,能提出解决问题的各种方法,并努力进行验证。
(2) 在课堂教学活动过程中,教师能创造性地设计教学过程,洞察课堂中发生地各种问题,并准确地判断发生问题的原因,能动地、有效地处理这种问题,把握教学活动地主动权。
5. 教学策略的运用:
(1) 主体发展策略——在课堂教学中,强调发挥学生学习的主动性,充分体现学生的主体作用。在课堂教学设计的过程中应充分发挥教师的主体作用,组织并落实多种形式的课堂实践活动,使学生在活动的参与过程中,提高认识能力和增强情感体验、情感控制能力,发展个性特长。
(2) 动机激发策略——在课堂教学中,教师应该把学生吸引到有兴趣的、有挑战性的学习活动中,让学生体验成功所产生的愉悦和成就感,学会正确地对待挫折,从正、反两方面来有效地激发学生的学习动机。
(3) 层次设计策略——在课堂教学中,应该从“自主、合作、体验、发展”等层次为学生提供概念、定理的实际背景,设计定理、公式的发现过程,让学生体验分析问题、解决问题的思考过程,领悟寻找真理、发现规律的方法和思想。
(4) 探究创新策略——在课堂教学中,教师应该为学生提供动手实践的机会和探究的时间,指导学生大胆质疑,鼓励学生敢于发表不同意见和独特见解。
(六) 数学问题解决能力的评价标准与方法:
1. 数学问题解决能力的评价标准:(1)能否把实际问题转化为数学问题;(2)能否应用各种策略或思想方法去解决问题;(3)能否有效地解决问题;(4)能否证明和解释结果;(5)能否概括和推广解法。
2. 数学问题解决能力的评价方法:(1)观察学生解题过程的细节;(2)聆听学生对解题方法的讨论;(3)批改学生的作业、测验和考试卷;(4)分析学生的学习体会或考试心得;(5)阅读学生的数学小论文。
(七) 研究的成效
1. 青年教师的课堂教育思想和观念从“灌输型”向“启发探究型”转化。
2. 学生的学习方式从“接受性学习”向“研究性学习”转化。
3. 师生关系从“从属型”向“平等型”转化。
4. 基础性的数学知识体系的构建可以通过“发现问题----分析问题----解决问题”的研究性学习方式来实现。“问题解决”课堂教学模式成为“基础型课程”与“研究型课程”有机结合的一种尝试。
参考文献
[1]武多义.有关数学教学模式问题的若干思考[J].数学教育学报,2001年04期.
[2]王继端.数学教师应具备的数学观念[J].数学教育学报,2001年01期.
[3]张文贵,王合义.对数学教学模式的几点认识[J].数学教育学报,1997年04期.
[4]刘利民,黄小玲.高中数学研究式教学模式[J].数学教育学报,2002年02期.
[5]刘卓雄.试论教学模式及其在数学教学中的应用[J].宁德师专学报(自然科学版),1995年02期
[6]曹一鸣.数学教学模式研究综述[J].中学数学教学参考,2000年21期.
[7]李昭军,崔玉伟;数学问题探究教学模式课堂改革实验操作初探[J].济宁师专学报,2000年06期.
关键词:创设情境;问题解决;能力培养
【中图分类号】G750
现今随着新课改的全面推进,地处甘肃南部的少数民族地区数学“创新精神与实践能力”的培养已成为素质教育的核心。问题解决能力就是“创新精神与实践能力”在数学教育领域的具体体现,是一种重要的数学素质。本课题力图通过教学实践研究,寻找“问题解决”能力培养与课程教材知识体系学习之间的互补与平衡,形成稳定简明的教学理论框架及其操作性较强的数学课堂教学模式,促进学生的数学意识、逻辑推理、信息交流、思维品质等数学素质的提高,为学生的自主学习、发展个性打下良好基础。
(一) “问题解决”课堂教学模式的理论框架:
(1) 在一定的问题情境背景下,学生可以利用必要的学习材料,借助教师和同伴的帮助,通过意义建构主动获得知识。
(2) 问题解决能力的培养为学生学习数学知识提供动力,而系统的数学知识体系为问题的解决提供保障。问题解决能力的培养与数学知识体系的建构两者之间的互补与平衡有助于学生认知结构的完善。
(3) 学生和教师是教学活动中能动的角色和要素,师生关系是互为主体、互相依存、互相配合的,师生双方的主体性在教学过程中都应得到发展和发挥。
(4) 学生主体作用主要体现在学生的学习活动过程中。
(5) 教师的主体作用主要体现在对教学活动进行科学认识的过程中,教学过程中教师的主导是发挥主体作用的具体表现形式。
(二) “问题解决”课堂教学模式的功能目标:
学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(三) 数学问题解决能力培养目标:
1. 会审题——能对问题情境进行分析和综合。
2. 会建模——能把实际问题数学化,建立数学模型。
3. 会转化——能对数学问题进行变换化归。
4. 会归类——能灵活运用各种数学思想和数学方法进行一题多解或多题一解,并能进行总结和整理。
5. 会反思——能对数学结果进行检验和评价。
6. 会编题——能在学习新知识后,在模仿的基础上编制练习题;能把数学知识与社会实际联系起来,编制数学应用题。
(四) “问题解决”课堂教学模式的操作程序:
从生活情境入手,或者从数学基础知识出发,把需要解决的问题有意识地、巧妙地寓于符合学生实际的基础知识之中,把学生引入一种与问题有关的情境之中,激发学生的探究兴趣和求知欲。
创设问题情境的主要方法:(1)通过语言描述,以讲故事的形式引导学生进入问题情境;(2)利用录音、录象、电脑动画等媒体创造形象直观的问题情境;(3)学生排练小品,再现问题情境;(4)利用照片、图片、实物或模型;(5)组织学生实地参观。
1. 尝试引导,把数学活动作为教学的载体。
学生在尝试进行问题解决的过程中,常常难以把握问题解决的思维方向,难以建立起新旧知识间的联系,难以判断知识运用是否正确、方法选择是否有效、问题的解是否准确等,这就需要教师进行启发引导。
常用启发引导方式:(1)重温与问题有关的知识。(2)阅读教材,学习新概念。(3)引导学生对问题进行联想、猜测、类比、归纳、推理等。(4)组织学生开展小组讨论和全班交流。
2. 自主解决,把能力培养作为教学的长远利益。
让学生学会并形成问题解决的思维方法,需要让学生反复经历多次的“自主解决”过程,这就需要教师把数学思想方法的培养作为长期的任务,在课堂教学中加强这方面的培养意识。
常用方式:(1)对于比较简单的问题,可以让学生独立完成,使学生体会到运用数学思想方法解决问题的快乐。(2)对于有一定难度的问题,应该让学生有充足的时间独立思考,再进行尝试解决。(3)对于思维力度较大的问题,应在学生独立思考、小组讨论和全班交流的基础上,通过合作共同解决。
3. 练习总结,把知识梳理作为教学的基本要求。
根据学生的认知特点,合理选择和设计例题与练习,培养主动梳理、运用知识的意识和数学语言表达能力,达到更好地掌握知识及其相互关系和数学思想方法的目的。
常用练习形式:(1)例题变式。(2)让学生进行错解剖析。(3)让学生根据要求进行命题,相互考察。
总结是把数学知识与技能通过“同化”或“顺应”的机能“平衡”认知结构的必要步骤。适时组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用。
常用总结方式:(1)在概念学习后,以辨析、类比等方式进行小结。(2)对解题过程进行反思。(3)从数学知识、数学思想、学习的启示三个层面进行课堂小结。(4)布置阅读、练习和实践等不同形式的课外数学活动。(5)让学生撰写考后感、学习心得、专题小论文。(6)指导学生开展研究性课题研究。
(五) 数学问题解决能力培养的课堂教学评价标准:
1. 教学目标的确定:
(1)知识目标的确定应重视数学基础知识和基本技能;(2)能力目标的确定应强调数学思想方法的揭示和培养;(3)情感目标的确定应注意学习兴趣的激发、良好人际关系的建立、科学态度和创新精神的培养等等。
2. 教学方法的选择:
采用探究式、启发式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识、基本技能和基本数学思想方法,培养积极探索和团结协作的科学精神。 3. 问题的选择:
合适的问题至少应有如下特点之一:
(1) 重视情景应用,即给出一种实际情景和需求,以解决现实困难为标志。
(2) 具有探究性,即问题不一定有解,答案不必唯一,条件可以变化,试验方案可以自己设计,允许与别人讨论等等。
(3) 非形式化,即不是教材内容的简单模仿,不是靠熟练操作就能完成的,需要较多的创造性。
4. 师生双主体意识的体现:
(1) 在课堂教学活动过程中,学生主动参与学习意识强,能主动发现和分析问题,能联系新旧知识,能在独立思考的基础上,与同伴开展交流、讨论,能提出解决问题的各种方法,并努力进行验证。
(2) 在课堂教学活动过程中,教师能创造性地设计教学过程,洞察课堂中发生地各种问题,并准确地判断发生问题的原因,能动地、有效地处理这种问题,把握教学活动地主动权。
5. 教学策略的运用:
(1) 主体发展策略——在课堂教学中,强调发挥学生学习的主动性,充分体现学生的主体作用。在课堂教学设计的过程中应充分发挥教师的主体作用,组织并落实多种形式的课堂实践活动,使学生在活动的参与过程中,提高认识能力和增强情感体验、情感控制能力,发展个性特长。
(2) 动机激发策略——在课堂教学中,教师应该把学生吸引到有兴趣的、有挑战性的学习活动中,让学生体验成功所产生的愉悦和成就感,学会正确地对待挫折,从正、反两方面来有效地激发学生的学习动机。
(3) 层次设计策略——在课堂教学中,应该从“自主、合作、体验、发展”等层次为学生提供概念、定理的实际背景,设计定理、公式的发现过程,让学生体验分析问题、解决问题的思考过程,领悟寻找真理、发现规律的方法和思想。
(4) 探究创新策略——在课堂教学中,教师应该为学生提供动手实践的机会和探究的时间,指导学生大胆质疑,鼓励学生敢于发表不同意见和独特见解。
(六) 数学问题解决能力的评价标准与方法:
1. 数学问题解决能力的评价标准:(1)能否把实际问题转化为数学问题;(2)能否应用各种策略或思想方法去解决问题;(3)能否有效地解决问题;(4)能否证明和解释结果;(5)能否概括和推广解法。
2. 数学问题解决能力的评价方法:(1)观察学生解题过程的细节;(2)聆听学生对解题方法的讨论;(3)批改学生的作业、测验和考试卷;(4)分析学生的学习体会或考试心得;(5)阅读学生的数学小论文。
(七) 研究的成效
1. 青年教师的课堂教育思想和观念从“灌输型”向“启发探究型”转化。
2. 学生的学习方式从“接受性学习”向“研究性学习”转化。
3. 师生关系从“从属型”向“平等型”转化。
4. 基础性的数学知识体系的构建可以通过“发现问题----分析问题----解决问题”的研究性学习方式来实现。“问题解决”课堂教学模式成为“基础型课程”与“研究型课程”有机结合的一种尝试。
参考文献
[1]武多义.有关数学教学模式问题的若干思考[J].数学教育学报,2001年04期.
[2]王继端.数学教师应具备的数学观念[J].数学教育学报,2001年01期.
[3]张文贵,王合义.对数学教学模式的几点认识[J].数学教育学报,1997年04期.
[4]刘利民,黄小玲.高中数学研究式教学模式[J].数学教育学报,2002年02期.
[5]刘卓雄.试论教学模式及其在数学教学中的应用[J].宁德师专学报(自然科学版),1995年02期
[6]曹一鸣.数学教学模式研究综述[J].中学数学教学参考,2000年21期.
[7]李昭军,崔玉伟;数学问题探究教学模式课堂改革实验操作初探[J].济宁师专学报,2000年06期.