论文部分内容阅读
摘 要:应用故障网络分析方法,研究了混合双极直流输电线路可能发生的各种短路故障类型,并进行了故障特性分析。根据分析结果发现:当直流输电线路发生区内故障时,整流侧与逆变侧的暂态电压和暂态电流夹角的余弦值相同;当直流输电线路区外(整流侧或逆变侧)发生故障时,整流侧与逆变侧的暂态电压和暂态电流夹角的余弦值相反。根据该故障特征,可实现区内、外故障的识别。利用小波变换提取暂态电压、电流分量。另外,故障极的暂态电压和电流的积的变化量远远大于正常极。根据此特征,进行故障选极。最后,通过电磁暂态仿真软件搭建电压不对称的混合双极直流输电系统仿真模型,对其直流输电线路设置不同故障进行仿真,利用MATLAB进行算法的验证,结果表明该保护新原理的正确性及故障选极是可行的。
关键词:直流线路保护;故障分析法;暂态功率;小波变换中图分类号:TM 7
文献标志码:A
文章编号:1672-9315(2021)04-0747-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0422开放科学(资源服务)标识码(OSID):
A new protection principle of hybrid bipolar
HVDC transmission line
GAO Shuping1,ZHU Hangjian2,ZHANG Baohui3,SONG Guobing3
(1.College of Electrical and Control Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;2.State Grid Tongchuan Power Supply Company,Tongchuan 727031,China;
3.School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
Abstract:By using the fault network analysis method,various types of short circuit faults that may occur on hybrid bipolar DC transmission lines are studied,and the fault characteristics are analyzed.From the analysis results,it is found that:when an internal fault occurs on the DC transmission line,the cosine of the angle between the transient voltage and the transient current of the rectifier side and the inverter side is the same;when an external fault occurs beyond the DC transmission line at the rectifier side or inverter side,the cosine of the angle between the transient voltage and the transient current of the rectifier side and the inverter side is opposite.According to the characteristics of the fault,the internal or external fault identification can be realized.Wavelet transform is used to extract transient voltage and current components.In addition,the change of the product of the transient voltage and current of the fault pole is much larger than that of the normal pole.According to this feature,an energy function criterion can be constructed to determine the fault pole.Finally,the simulation model of hybrid bipolar DC transmission system with asymmetric voltage is built by PSCAD,different fault types are set up in the DC circuit and the simulation was carried out using MATLAB.Simulation results show that the proposed protection principle is correct and the fault pole selection is feasibile.
Key words:direct current line protection;fault network analysis method;transient power;wavelet transform
0 引 言中国直流输电
(line commutated converter high voltage direct current,LCC-HVDC)发展较早[1],其在很多方面优于交流輸电[2-3]。而电压源换流器型高压直流输电(voltage source converter based high voltage direct current,VSC-HVDC)在某些方面又优于直流输电[4-8]。为综合利用两者的优点,对混合直流输电系统(Hybrid-HVDC)的研究慢慢增多[9-10]。如Skagerrak 4 HVDC Light工程,使得以水电为主的挪威和风电、火电为主的丹麦两国的电网都可以接入更多的可再生能源,提高用电效率,具有很好的发展前景[11-14]。孙天甲首先对HVDC系统出现故障的原因进行了分析,提出相应的保护方案[15]。潘伟明提出一种利用电流电压信号的极性差别来识别故障的单端保护方法[16]。董鑫将故障测距与行波保护方案相结合,提出一种新的保护方案[17]。孙飞等首先引入相关系数概念,进而求出故障后的电压信号的相关系数,从而对故障位置进行判断[18]。齐国强等使用希尔伯特黄算法,提取信号的相位信息,对故障进行区分[19]。蒋灵通等分析VSC-HVDC直流线路故障时电流信号波头的故障特性,进一步得出两端保护方法[20]。高本锋等以基于行波幅值的高压直流输电线路保护方案为对象,研究故障位置、过渡电阻等影响行波特性的几种因素对保护方案的影响,并提出行波保护整定流程[21]。李小鹏等介绍一种利用S变换提取电压、电流行波并计算两段的波阻抗的纵联保护方法[22]。薛士敏等以Marti线路模型为研究对象,综合利用线路行波保护和纵差保护,形成一种新的MMC-HVDC保护方法[23]。周家培等通过研究直流电抗器电压大小和方向的差异,利用差异特征构成的柔性直流电网边界保护方案[24]。由文献[15-24]可以看出,目前针对混合直流输电线路的保护研究还比较少。基于此,文中针对电压不对称的混合双极直流输电的线路保护进行研究。 1
电压不对称的混合双极直流输电系统结构及故障特征分析
1.1 电压不对称的混合双极直流输电系统图1是电压不对称的混合双极直流输电系统结构,该系统正极采用LCC换流器,电压等级是+500 kV;负极采用VSC换流器,电压等级是-200 kV。其正极整流侧采用定直流电流控制,逆变侧采用定关断角控制;负极整流侧采用定直流电压和定交流电压控制,逆变侧采用定直流电流和定交流电压控制,通过两端共同采用定交流电压控制,发挥VSC-HVDC对交流母线电压的调节能力来减少正极LCC-HVDC的换相失败,使得系统具有更快速的故障自清除能力,提高整个系统的运行特性[25]。
1.2
电压不对称的混合双极直流输电系统的故障特性分析
对图1所示的直流输电系统设置故障,f1、f2分别是正、负极区内接地故障;f3、f4分别是正极整流侧、逆变侧区外接地故障;f5、f6分别是双极接地、双极短路故障。根据叠加定理可知,输电系统在正极线路上发生短路接地故障,即f1,相当于在正常的网络上增加一个负电源,其网络故障附加状态如图2(a)所示。图2是该系统发生上述6种故障时的故障附加状态。
规定电流正方向为母线指向线路。图2中:ipr,upr和ipi,upi分别为正极整流侧和逆变侧的电流、电压;inr,unr和ini,uni分别为负极整流侧和逆变侧的电流、电压。根据上述故障附加状态图,以区内故障f1,可得整流侧和逆变侧暂态电压、电流见式(1)和(2)。
ipr>0
upr<0
(1)
ini>0
uni<0
(2)夹角余弦值输入的2个值符号相反时,夹角会很大,则呈负相关,用-1表示;反之,符号相同时,则呈正相关,用1表示。即区内故障f1的整流侧暂态电压和电流的夹角余弦值为-1,逆变侧暂态电压与电流的夹角余弦值为-1[26]。其余5种故障类型的整流侧与逆变侧暂态电压与电流的夹角余弦值也可同理求得。不同故障类型的暂态电压和暂态电流夹角的余弦值判别结果见表1。
因此,根据区内、外故障时,整流侧和逆变侧暂态电压和电流夹角余弦值的不同,可以实现区内、外故障的判别。
1.3 故障选极由于故障极上暂态电压、电流的变化量远远大于正常极上的暂态电压、电流,正极能量E1与负极能量E2的求解见式(3)和(4)。
E1=∫t n
t 1P1rdt
(3)
E2=∫t n
t 1P2rdt
(4)
式(3)与(4)中 P1r和P2r分别为LCC整流侧的暂态电压和电流的积、VSC整流侧的暂态电压和电流的积;E1和E2分别为正极和负极的能量;t1,t2分别为第一个和第n个采样点时间。因此故障极上的能量大于正常极上的能量,令k1=E1E2;k2=
E2E1。当k1>kset时,则为正极故障;当k2>kset时,则
为负极故障;当E1>Eset1且E2>Eset2,则为双极故障。
2 保护方法
2.1 利用小波变换提取暂态分量小波变换因既可对信号进行多尺度细化,分析信号的任意细节,又在时域和频域都具有良好的局部特征能力,而被广泛应用。因此,文中利用小波变换对正、负极暂态电压和暂态电流进行六尺度分解。
2.2 保护方法的实现步骤图3是电压不对称的混合双极直流输电线路保护流程。
3 仿真验证利用PSCAD软件,建立如图1所示的电压不对称的混合双极直流输电系统,仿真时,故障发生时刻为1.5 s,持续时间0.02 s,数据采样频率为100 kHz,故障位置为f1~f6,其采样点的个数为500。
3.1 区内故障仿真结果图4是故障位置f1处仿真结果。
综上可得,upr和ipr极性相反其余弦值为-1,upi和ipi极性相反其余弦值为-1,与表1所得判别结果相符,所以其整流侧与逆变侧的余弦值相同(均为-1),判断故障地点在区内;k1=216,kset=100,k1>kset,故判断为正极区内故障。图5是故障位置f2处的仿真结果。
综上可得,其整流侧与逆变侧的余弦值相同(均为-1),判断故障地点在区内;k2=489,kset=100,k2>kset,故判断为负极区内故障。图6是故障位置f5处的仿真结果。
同理可得,其正极整流侧与逆变侧的余弦值相同(均为-1),负极整流侧与逆变侧的余弦值相同(均为-1),所以判断故障地点在区内判断故障地点在区内;
E1=3×55,E2=9×104,
Eset1=Eset2=100,E1>Eset1,E2>Eset2,故判断为双极故障。图7是故障位置f6处的仿真结果。
同理可得,其正极整流侧与逆变侧的余弦值相同(均为-1),负极整流侧与逆变侧的余弦值相同(均为-1),所以判断故障地点在区内;
E1=4.5×105,E2=1.1×105,Eset1=Eset2=100,E1>Eset1,E2>Eset2,故判断为双极故障。
3.2 区外故障仿真结果图8是故障位置f3处的仿真结果。
综上可得,其整流侧与逆变侧的余弦值不同(一侧为1,另一側为-1),故判断为区外故障。图9是故障位置f4处的仿真结果。
综上可得,其整流侧与逆变侧的余弦值不同(一侧为-1,另一侧为1),故判断为区外故障。
3.3 经过渡电阻时仿真结果考虑到过渡电阻会使得暂态分量变得很小而难以检测或者区分开来,文中对经故障电阻情况进行仿真。故障f1~f6在过渡电阻下的仿真结果见表2。 由表2可得,在过渡电阻为350 Ω时都可以准确地区分故障。
4 结 论
1)根据对PSCAD搭建的电压不对称的混合双极直流输电模型的故障特性的分析,得出区内故障时,整流侧和逆变侧暂态电压及电流的夹角余弦值都为-1;区外故障时,整流侧和逆变侧暂态电压及电流的夹角余弦值为-1和1。
2)发生区内故障时,故障极的暂态电压和电流积的能量大于非故障极。3)根据大量数据仿真验证,结果表明,所提保护方法可以准确识别区内与区外故障,发生区内
故障时,能够启动保护和正确选极;同时文中所提保护方法在不同过渡电阻、不同故障类型下都能适用。
参考文献(References):
[1]
曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12.ZENG Nanchao.The role of HVDC power transmission in the development of China’s power grid[J].High Voltage Engineering,2004,30(11):11-12.
[2]楊秀,陈鸿煜,靳希.高压直流输电系统动态恢复特性的仿真研究[J].高电压技术,2006,32(9):11-14.YANG Xiu,CHENG Hongyu,JIN Xi.Simulation research on dyna-mic recovery characteristics of HVDC system[J].High Voltage Technology,2006,32(9):11-14.
[3]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012,36(4):1-9.LIANG Xuming,ZHANG Ping,CHANG Yong.Current status and development prospect of HVDC transmission technology[J].Power System Technology,2012,36(4):1-9.
[4]吴娜.高压直流输电系统分析与控制初探[D].昆明:昆明理工大学,2005.
WU Na.Analysis and control of HVDC transmission system[D].Kunming:Kunming University of Science and Technology,2005.
[5]袁阳,卫志农,雷霄,等.直流输电系统换相失败研究综述[J].电力自动化设备,2013,33(11):140-147.YUAN Yang,WEI Zhinong,LEI Xiao,et al.Survey of commutation failures in DC transmission systems[J].Electric Power Automation Equipment,2013,33(11):140-147.
[6]ZHANG Y,MENZIES R W,NAYAK O B,et al.Dynamic performance of a STATCOM at an HVDC inverter feeding a very wak ac system[J].IEEE Transactions on Power Delivery,1996,11(11):958-964.
[7]NAYAK O B,GOLE A M,CHAPMAN D G,et al.Dynamic performance of static and synchronous compensators at an HVDC inverter bus in a very weak AC system[J].IEEE Transactions on Power Systems,1994,9(3):1350-1358.
[8]CHAN-KI K.Dynamic coordination strategies between HVDC and STATCOM[C]//Transmission & Distribution Conference & Exposition:Asia and Pacific.Seoul,South Korea:IEEE,2009:1-9.
[9]刘文静.电压源、电流源混合型直流输电的运行机理研究[D].北京:华北电力大学,2014.LIU Wenjing.Research on operation mechanism of hybrid HVDC transmission with voltage source and current source[D].Beijing:North China Electric Power University,2014.
[10]冯明,李兴源,李宽.混合直流输电系统综述[J].现代电力,2015,32(2):1-8.FENG Ming,LI Xingyuan,LI Kuan.Summary of hybrid DC transmission system[J].Modern Electric Power,2015,32(2):1-8.
[11]李程昊.混合直流输电系统拓扑结构及关键技术研究[D].武汉:华中科技大学,2015.LI Chenghao.Research on topology and key technologies of hybrid DC transmission system[D].Wuhan:Huazhong University of Science and Technology,2015. [12]郭春义,赵成勇,
MONTANARI A,等.混合双极高压直流输电系统的特性研究[J].中国电机工程学报,2012,32(10):14,98-104.
GUO Chunyi,ZHAO Chengyong,MONTANARI A,et al.Characteristics of hybrid bipolar HVDC transmission system[J].Proceedings of the CSEE,2012,32(10):14,98-104.
[13]
HALVORSDATTER KJORHOLT
A M.HVDC transmission using a bipolar configuration composed of an LCC and MMC[D].
Trondheim:Norwegian University of Science and Technology,2014.
[14]
ALEMAYO T.Performance of a combined LCC and VSC Bipole HVDC link[D].Aalborg:Aalborg University,2010.
[15]孙天甲.高压直流输电系统故障分析及其线路保护方案[J].科技创新与应用,2015(4):119.SUN Tianjia.Failure analysis and line protection scheme of HVDC transmission system[J].Science & Technology Innovation and Application,2015(4):119.
[16]潘伟明.高压直流输电线路的行波保护研究[D].南京:南京理工大学,2013.
PAN Weiming.Research on traveling wave protection of HVDC transmission lines[D].Nanjing:Nanjing University of Science and Technology,2013.
[17]董鑫.高压直流输电线路行波保护的研究[D].吉林:东北电力大学,2008.DONG Xin.Study on traveling wave protection of HVDC transmission lines[D].Jilin:Northeast Dianli University,2008.
[18]孔飞,张保会,王艳婷.基于行波波形相关性分析的直流输电线路纵联保护方案[J].电力系统自动化,2014,38(20):108-114.
KONG Fei,ZHANG Baohui,WANG Yanting.Pilot protection scheme of DC transmission lines based on correlation analysis of traveling wave waveforms[J].Automation of Electric Power Systems,2014,38(20):108-114.
[19]齊国强,王增平.基于Hilbert-Huang变换的HVDC突变量方向纵联保护方法[J].电力系统保护与控制,2017,45(20):92-99.QI Guoqiang,WANG Zengping.HVDC mutation-based longitudinal protection method based on Hilbert-Huang transform[J].Power System Protection and Control,2017,45(20):92-99.
[20]蒋灵通,陈青,王磊,等.基于故障电流前反行波初始波头时差的VSC-HVDC纵联方向保护[J].电网技术,2018,42(12):3998-4005.JIANG Lingtong,CHEN Qing,WANG Lei,et al.VSC-HVDC pilot directional protection based on time difference of initial wave head of forward traveling wave before fault current[J].Power System Technology,2018,42(12):3998-4005.
[21]高本锋,刘辛晔,张云晓,等.高压直流输电线路行波特性与保护定值整定[J].电力系统自动化,2015,39(16):120-125.
GAO Benfeng,LIU Xinye,ZHANG Yunxiao,et al.Travelling wave characteristics and setting of protection settings for HVDC transmission lines[J].Automation of Electric Power Systems,2015,39(16):120-125.
[22]李小鹏,滕予非,刘耀,等.基于测量波阻抗的高压直流输电线路纵联保护[J].电网技术,2017,41(2):617-623.LI Xiaopeng,TENG Yufei,LIU Yao,et al.Pilot protection of HVDC transmission lines based on measured wave impedance[J].Power System Technology,2017,41(2):617-623.
[23]薛士敏,孙亚冰,刘白冰,等.基于Marti模型的柔性直流输电系统纵联行波差动保护[J].中国电机工程学报,2019,39(21):6288-6300.
XUE Shimin,SUN Yabing,LIU Baibing,et al.Pilot traveling wave differential protection of flexible DC transmission system based on Marti model[J].Proceedings of the CSEE,2019,39(21):6288-6300.
[24]周家培,赵成勇,李承昱,等.基于直流电抗器电压的多端柔性直流电网边界保护方案[J].电力系统自动化,2017,41(19):89-94,146.ZHOU Jiapei,ZHAO Chengyong,LI Chengyu,et al.Multi-terminal flexible DC grid boundary protection scheme based on DC reactor voltage[J].Automation of Electric Power Systems,2017,41(19):89-94,146.
[25]赵成勇,郭春义,刘文静.混合直流输电[M].北京:科学出版社,2014.
[26]周家培,赵成勇,李承昱,等.采用电流突变量夹角余弦的直流电网线路纵联保护方法[J].电力系统自动化,2018,42(14):165-171.ZHOU Jiapei,ZHAO Chengyong,LI Chengyu,et al.Pilot protection method for DC lines based on incleded angle cosine of fault current component[J].Automation of Electric Power Systems,2018,42(14):165-171.
关键词:直流线路保护;故障分析法;暂态功率;小波变换中图分类号:TM 7
文献标志码:A
文章编号:1672-9315(2021)04-0747-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0422开放科学(资源服务)标识码(OSID):
A new protection principle of hybrid bipolar
HVDC transmission line
GAO Shuping1,ZHU Hangjian2,ZHANG Baohui3,SONG Guobing3
(1.College of Electrical and Control Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;2.State Grid Tongchuan Power Supply Company,Tongchuan 727031,China;
3.School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
Abstract:By using the fault network analysis method,various types of short circuit faults that may occur on hybrid bipolar DC transmission lines are studied,and the fault characteristics are analyzed.From the analysis results,it is found that:when an internal fault occurs on the DC transmission line,the cosine of the angle between the transient voltage and the transient current of the rectifier side and the inverter side is the same;when an external fault occurs beyond the DC transmission line at the rectifier side or inverter side,the cosine of the angle between the transient voltage and the transient current of the rectifier side and the inverter side is opposite.According to the characteristics of the fault,the internal or external fault identification can be realized.Wavelet transform is used to extract transient voltage and current components.In addition,the change of the product of the transient voltage and current of the fault pole is much larger than that of the normal pole.According to this feature,an energy function criterion can be constructed to determine the fault pole.Finally,the simulation model of hybrid bipolar DC transmission system with asymmetric voltage is built by PSCAD,different fault types are set up in the DC circuit and the simulation was carried out using MATLAB.Simulation results show that the proposed protection principle is correct and the fault pole selection is feasibile.
Key words:direct current line protection;fault network analysis method;transient power;wavelet transform
0 引 言中国直流输电
(line commutated converter high voltage direct current,LCC-HVDC)发展较早[1],其在很多方面优于交流輸电[2-3]。而电压源换流器型高压直流输电(voltage source converter based high voltage direct current,VSC-HVDC)在某些方面又优于直流输电[4-8]。为综合利用两者的优点,对混合直流输电系统(Hybrid-HVDC)的研究慢慢增多[9-10]。如Skagerrak 4 HVDC Light工程,使得以水电为主的挪威和风电、火电为主的丹麦两国的电网都可以接入更多的可再生能源,提高用电效率,具有很好的发展前景[11-14]。孙天甲首先对HVDC系统出现故障的原因进行了分析,提出相应的保护方案[15]。潘伟明提出一种利用电流电压信号的极性差别来识别故障的单端保护方法[16]。董鑫将故障测距与行波保护方案相结合,提出一种新的保护方案[17]。孙飞等首先引入相关系数概念,进而求出故障后的电压信号的相关系数,从而对故障位置进行判断[18]。齐国强等使用希尔伯特黄算法,提取信号的相位信息,对故障进行区分[19]。蒋灵通等分析VSC-HVDC直流线路故障时电流信号波头的故障特性,进一步得出两端保护方法[20]。高本锋等以基于行波幅值的高压直流输电线路保护方案为对象,研究故障位置、过渡电阻等影响行波特性的几种因素对保护方案的影响,并提出行波保护整定流程[21]。李小鹏等介绍一种利用S变换提取电压、电流行波并计算两段的波阻抗的纵联保护方法[22]。薛士敏等以Marti线路模型为研究对象,综合利用线路行波保护和纵差保护,形成一种新的MMC-HVDC保护方法[23]。周家培等通过研究直流电抗器电压大小和方向的差异,利用差异特征构成的柔性直流电网边界保护方案[24]。由文献[15-24]可以看出,目前针对混合直流输电线路的保护研究还比较少。基于此,文中针对电压不对称的混合双极直流输电的线路保护进行研究。 1
电压不对称的混合双极直流输电系统结构及故障特征分析
1.1 电压不对称的混合双极直流输电系统图1是电压不对称的混合双极直流输电系统结构,该系统正极采用LCC换流器,电压等级是+500 kV;负极采用VSC换流器,电压等级是-200 kV。其正极整流侧采用定直流电流控制,逆变侧采用定关断角控制;负极整流侧采用定直流电压和定交流电压控制,逆变侧采用定直流电流和定交流电压控制,通过两端共同采用定交流电压控制,发挥VSC-HVDC对交流母线电压的调节能力来减少正极LCC-HVDC的换相失败,使得系统具有更快速的故障自清除能力,提高整个系统的运行特性[25]。
1.2
电压不对称的混合双极直流输电系统的故障特性分析
对图1所示的直流输电系统设置故障,f1、f2分别是正、负极区内接地故障;f3、f4分别是正极整流侧、逆变侧区外接地故障;f5、f6分别是双极接地、双极短路故障。根据叠加定理可知,输电系统在正极线路上发生短路接地故障,即f1,相当于在正常的网络上增加一个负电源,其网络故障附加状态如图2(a)所示。图2是该系统发生上述6种故障时的故障附加状态。
规定电流正方向为母线指向线路。图2中:ipr,upr和ipi,upi分别为正极整流侧和逆变侧的电流、电压;inr,unr和ini,uni分别为负极整流侧和逆变侧的电流、电压。根据上述故障附加状态图,以区内故障f1,可得整流侧和逆变侧暂态电压、电流见式(1)和(2)。
ipr>0
upr<0
(1)
ini>0
uni<0
(2)夹角余弦值输入的2个值符号相反时,夹角会很大,则呈负相关,用-1表示;反之,符号相同时,则呈正相关,用1表示。即区内故障f1的整流侧暂态电压和电流的夹角余弦值为-1,逆变侧暂态电压与电流的夹角余弦值为-1[26]。其余5种故障类型的整流侧与逆变侧暂态电压与电流的夹角余弦值也可同理求得。不同故障类型的暂态电压和暂态电流夹角的余弦值判别结果见表1。
因此,根据区内、外故障时,整流侧和逆变侧暂态电压和电流夹角余弦值的不同,可以实现区内、外故障的判别。
1.3 故障选极由于故障极上暂态电压、电流的变化量远远大于正常极上的暂态电压、电流,正极能量E1与负极能量E2的求解见式(3)和(4)。
E1=∫t n
t 1P1rdt
(3)
E2=∫t n
t 1P2rdt
(4)
式(3)与(4)中 P1r和P2r分别为LCC整流侧的暂态电压和电流的积、VSC整流侧的暂态电压和电流的积;E1和E2分别为正极和负极的能量;t1,t2分别为第一个和第n个采样点时间。因此故障极上的能量大于正常极上的能量,令k1=E1E2;k2=
E2E1。当k1>kset时,则为正极故障;当k2>kset时,则
为负极故障;当E1>Eset1且E2>Eset2,则为双极故障。
2 保护方法
2.1 利用小波变换提取暂态分量小波变换因既可对信号进行多尺度细化,分析信号的任意细节,又在时域和频域都具有良好的局部特征能力,而被广泛应用。因此,文中利用小波变换对正、负极暂态电压和暂态电流进行六尺度分解。
2.2 保护方法的实现步骤图3是电压不对称的混合双极直流输电线路保护流程。
3 仿真验证利用PSCAD软件,建立如图1所示的电压不对称的混合双极直流输电系统,仿真时,故障发生时刻为1.5 s,持续时间0.02 s,数据采样频率为100 kHz,故障位置为f1~f6,其采样点的个数为500。
3.1 区内故障仿真结果图4是故障位置f1处仿真结果。
综上可得,upr和ipr极性相反其余弦值为-1,upi和ipi极性相反其余弦值为-1,与表1所得判别结果相符,所以其整流侧与逆变侧的余弦值相同(均为-1),判断故障地点在区内;k1=216,kset=100,k1>kset,故判断为正极区内故障。图5是故障位置f2处的仿真结果。
综上可得,其整流侧与逆变侧的余弦值相同(均为-1),判断故障地点在区内;k2=489,kset=100,k2>kset,故判断为负极区内故障。图6是故障位置f5处的仿真结果。
同理可得,其正极整流侧与逆变侧的余弦值相同(均为-1),负极整流侧与逆变侧的余弦值相同(均为-1),所以判断故障地点在区内判断故障地点在区内;
E1=3×55,E2=9×104,
Eset1=Eset2=100,E1>Eset1,E2>Eset2,故判断为双极故障。图7是故障位置f6处的仿真结果。
同理可得,其正极整流侧与逆变侧的余弦值相同(均为-1),负极整流侧与逆变侧的余弦值相同(均为-1),所以判断故障地点在区内;
E1=4.5×105,E2=1.1×105,Eset1=Eset2=100,E1>Eset1,E2>Eset2,故判断为双极故障。
3.2 区外故障仿真结果图8是故障位置f3处的仿真结果。
综上可得,其整流侧与逆变侧的余弦值不同(一侧为1,另一側为-1),故判断为区外故障。图9是故障位置f4处的仿真结果。
综上可得,其整流侧与逆变侧的余弦值不同(一侧为-1,另一侧为1),故判断为区外故障。
3.3 经过渡电阻时仿真结果考虑到过渡电阻会使得暂态分量变得很小而难以检测或者区分开来,文中对经故障电阻情况进行仿真。故障f1~f6在过渡电阻下的仿真结果见表2。 由表2可得,在过渡电阻为350 Ω时都可以准确地区分故障。
4 结 论
1)根据对PSCAD搭建的电压不对称的混合双极直流输电模型的故障特性的分析,得出区内故障时,整流侧和逆变侧暂态电压及电流的夹角余弦值都为-1;区外故障时,整流侧和逆变侧暂态电压及电流的夹角余弦值为-1和1。
2)发生区内故障时,故障极的暂态电压和电流积的能量大于非故障极。3)根据大量数据仿真验证,结果表明,所提保护方法可以准确识别区内与区外故障,发生区内
故障时,能够启动保护和正确选极;同时文中所提保护方法在不同过渡电阻、不同故障类型下都能适用。
参考文献(References):
[1]
曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12.ZENG Nanchao.The role of HVDC power transmission in the development of China’s power grid[J].High Voltage Engineering,2004,30(11):11-12.
[2]楊秀,陈鸿煜,靳希.高压直流输电系统动态恢复特性的仿真研究[J].高电压技术,2006,32(9):11-14.YANG Xiu,CHENG Hongyu,JIN Xi.Simulation research on dyna-mic recovery characteristics of HVDC system[J].High Voltage Technology,2006,32(9):11-14.
[3]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012,36(4):1-9.LIANG Xuming,ZHANG Ping,CHANG Yong.Current status and development prospect of HVDC transmission technology[J].Power System Technology,2012,36(4):1-9.
[4]吴娜.高压直流输电系统分析与控制初探[D].昆明:昆明理工大学,2005.
WU Na.Analysis and control of HVDC transmission system[D].Kunming:Kunming University of Science and Technology,2005.
[5]袁阳,卫志农,雷霄,等.直流输电系统换相失败研究综述[J].电力自动化设备,2013,33(11):140-147.YUAN Yang,WEI Zhinong,LEI Xiao,et al.Survey of commutation failures in DC transmission systems[J].Electric Power Automation Equipment,2013,33(11):140-147.
[6]ZHANG Y,MENZIES R W,NAYAK O B,et al.Dynamic performance of a STATCOM at an HVDC inverter feeding a very wak ac system[J].IEEE Transactions on Power Delivery,1996,11(11):958-964.
[7]NAYAK O B,GOLE A M,CHAPMAN D G,et al.Dynamic performance of static and synchronous compensators at an HVDC inverter bus in a very weak AC system[J].IEEE Transactions on Power Systems,1994,9(3):1350-1358.
[8]CHAN-KI K.Dynamic coordination strategies between HVDC and STATCOM[C]//Transmission & Distribution Conference & Exposition:Asia and Pacific.Seoul,South Korea:IEEE,2009:1-9.
[9]刘文静.电压源、电流源混合型直流输电的运行机理研究[D].北京:华北电力大学,2014.LIU Wenjing.Research on operation mechanism of hybrid HVDC transmission with voltage source and current source[D].Beijing:North China Electric Power University,2014.
[10]冯明,李兴源,李宽.混合直流输电系统综述[J].现代电力,2015,32(2):1-8.FENG Ming,LI Xingyuan,LI Kuan.Summary of hybrid DC transmission system[J].Modern Electric Power,2015,32(2):1-8.
[11]李程昊.混合直流输电系统拓扑结构及关键技术研究[D].武汉:华中科技大学,2015.LI Chenghao.Research on topology and key technologies of hybrid DC transmission system[D].Wuhan:Huazhong University of Science and Technology,2015. [12]郭春义,赵成勇,
MONTANARI A,等.混合双极高压直流输电系统的特性研究[J].中国电机工程学报,2012,32(10):14,98-104.
GUO Chunyi,ZHAO Chengyong,MONTANARI A,et al.Characteristics of hybrid bipolar HVDC transmission system[J].Proceedings of the CSEE,2012,32(10):14,98-104.
[13]
HALVORSDATTER KJORHOLT
A M.HVDC transmission using a bipolar configuration composed of an LCC and MMC[D].
Trondheim:Norwegian University of Science and Technology,2014.
[14]
ALEMAYO T.Performance of a combined LCC and VSC Bipole HVDC link[D].Aalborg:Aalborg University,2010.
[15]孙天甲.高压直流输电系统故障分析及其线路保护方案[J].科技创新与应用,2015(4):119.SUN Tianjia.Failure analysis and line protection scheme of HVDC transmission system[J].Science & Technology Innovation and Application,2015(4):119.
[16]潘伟明.高压直流输电线路的行波保护研究[D].南京:南京理工大学,2013.
PAN Weiming.Research on traveling wave protection of HVDC transmission lines[D].Nanjing:Nanjing University of Science and Technology,2013.
[17]董鑫.高压直流输电线路行波保护的研究[D].吉林:东北电力大学,2008.DONG Xin.Study on traveling wave protection of HVDC transmission lines[D].Jilin:Northeast Dianli University,2008.
[18]孔飞,张保会,王艳婷.基于行波波形相关性分析的直流输电线路纵联保护方案[J].电力系统自动化,2014,38(20):108-114.
KONG Fei,ZHANG Baohui,WANG Yanting.Pilot protection scheme of DC transmission lines based on correlation analysis of traveling wave waveforms[J].Automation of Electric Power Systems,2014,38(20):108-114.
[19]齊国强,王增平.基于Hilbert-Huang变换的HVDC突变量方向纵联保护方法[J].电力系统保护与控制,2017,45(20):92-99.QI Guoqiang,WANG Zengping.HVDC mutation-based longitudinal protection method based on Hilbert-Huang transform[J].Power System Protection and Control,2017,45(20):92-99.
[20]蒋灵通,陈青,王磊,等.基于故障电流前反行波初始波头时差的VSC-HVDC纵联方向保护[J].电网技术,2018,42(12):3998-4005.JIANG Lingtong,CHEN Qing,WANG Lei,et al.VSC-HVDC pilot directional protection based on time difference of initial wave head of forward traveling wave before fault current[J].Power System Technology,2018,42(12):3998-4005.
[21]高本锋,刘辛晔,张云晓,等.高压直流输电线路行波特性与保护定值整定[J].电力系统自动化,2015,39(16):120-125.
GAO Benfeng,LIU Xinye,ZHANG Yunxiao,et al.Travelling wave characteristics and setting of protection settings for HVDC transmission lines[J].Automation of Electric Power Systems,2015,39(16):120-125.
[22]李小鹏,滕予非,刘耀,等.基于测量波阻抗的高压直流输电线路纵联保护[J].电网技术,2017,41(2):617-623.LI Xiaopeng,TENG Yufei,LIU Yao,et al.Pilot protection of HVDC transmission lines based on measured wave impedance[J].Power System Technology,2017,41(2):617-623.
[23]薛士敏,孙亚冰,刘白冰,等.基于Marti模型的柔性直流输电系统纵联行波差动保护[J].中国电机工程学报,2019,39(21):6288-6300.
XUE Shimin,SUN Yabing,LIU Baibing,et al.Pilot traveling wave differential protection of flexible DC transmission system based on Marti model[J].Proceedings of the CSEE,2019,39(21):6288-6300.
[24]周家培,赵成勇,李承昱,等.基于直流电抗器电压的多端柔性直流电网边界保护方案[J].电力系统自动化,2017,41(19):89-94,146.ZHOU Jiapei,ZHAO Chengyong,LI Chengyu,et al.Multi-terminal flexible DC grid boundary protection scheme based on DC reactor voltage[J].Automation of Electric Power Systems,2017,41(19):89-94,146.
[25]赵成勇,郭春义,刘文静.混合直流输电[M].北京:科学出版社,2014.
[26]周家培,赵成勇,李承昱,等.采用电流突变量夹角余弦的直流电网线路纵联保护方法[J].电力系统自动化,2018,42(14):165-171.ZHOU Jiapei,ZHAO Chengyong,LI Chengyu,et al.Pilot protection method for DC lines based on incleded angle cosine of fault current component[J].Automation of Electric Power Systems,2018,42(14):165-171.