论文部分内容阅读
The Eastern Kunlun Mountains play an important role in the growth and eastward extrusion of the Tibetan Plateau. Tectonic and sedimentary study of the Cenozoic Qaidam Basin, especially the southern part, provides key evidence for understanding their evolution. Here we present evidence including isopach maps, seismic sections and sedimentary analysis of single well to illustrate the sedimentary development of the basin and the structural features of its southern margin. The Qaidam Basin extended across Qiman Tagh-Eastern Kunlun Mountains in the early Cenozoic and withdrew northward at ca. 35.5 Ma, and then buckled as an EW striking elliptical depression since ca. 14.9 Ma, with the main depocenter migrating eastward. Our results support the view that the Kumukol and Hoh Xil basins joined the Qaidam Basin in the early Cenozoic time and we propose the Eastern Kunlun Mountains uplifted in the mid-Miocene.
The Eastern Kunlun Mountains play an important role in the growth and eastward extrusion of the Tibetan Plateau. Tectonic and sedimentary study of the Cenozoic Qaidam Basin, especially the southern part, provides the key evidence for understanding their evolution. Here we present evidence including isopach maps, seismic sections and sedimentary analysis of single well to illustrate the sedimentary development of the basin and the structural features of its southern margin. The Qaidam Basin extended across Qiman Tagh-Eastern Kunlun Mountains in the early Cenozoic and with northward at ca. 35.5 Ma, and then buckled as an EW striking elliptical depression since ca. 14.9 Ma, with the main depocenter migrating eastward. Our results support the view that the Kumukol and Hoh Xil basins joined the Qaidam Basin in the early Cenozoic time and we propose the Eastern Kunlun Mountains uplifted in the mid-Miocene.