论文部分内容阅读
低信噪比、干扰绕射以及与倾角有关的问题(例如,反射层点分散,依赖于倾角的DMO和反射角)使可靠的振幅相对于炮检距(AVO)分析成为一项困难的工作叠前时间偏移(PSTM)使绕射收敛,增加信噪比,并且减少与倾角有关的问题。因此,通常在地震资料中提取与炮检距有关的信息之前需要做PSTM,并且在把实际地震资料和一维地下模型合成数据相比较之前,PSTM是必须做的。我们提出一个二维频率—波数共炮检距叠前时间偏移算法。为了准确地处理振幅,在做偏移之前数据需要从三维向二维转化。这通过对数据进行平面外几何扩散校正来完成利用被偏移的最大倾角随旅行时和炮检距的增加而减少的事实,偏移假象被衰减。进一步处理之前的最终处理步骤是二维几何扩散校正和消除偏移中固有的隐含NMO校正。两个海上资料例子说明了叠前时间偏移之后数据质量得到改进,使得下一步的振幅分析更加可靠
Low signal-to-noise ratios, perturbing diffraction, and tilt-related issues (for example, reflective layer scatter, dip-dependent DMO, and reflection angles) make reliable amplitudes relative to offset (AVO) analysis a difficult task The prestack time shift (PSTM) converges the diffraction, increases the signal-to-noise ratio, and reduces tilt-related issues. Therefore, it is usually necessary to do PSTM before retrieving offset-related information from seismic data, and the PSTM must do so before comparing the actual seismic data with the one-dimensional subsurface model composite data. We propose a two-dimensional frequency-wavenumber co-prestack time migration algorithm. In order to accurately handle the amplitude, the data needs to be transformed from three dimensions to two dimensions before doing the offset. This is done by out-of-plane geometric diffusion correction of the data to account for the fact that the offset artifacts are attenuated by the fact that the maximum tilt angle to be offset is reduced with the increase in travel and offset distances. The final processing step before further processing is the implicit NMO correction inherent in two-dimensional geometric diffusion correction and elimination of offsets. Two examples of offshore data illustrate the improved data quality after prestack time migration, which makes the next step of amplitude analysis more reliable