单幅图像刚体目标姿态估计方法综述

来源 :中国图象图形学报 | 被引量 : 7次 | 上传用户:jason008_xu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
刚体目标姿态作为计算机视觉技术的重点研究方向之一,旨在确定场景中3维目标的位置平移和方位旋转等多个自由度,越来越多地应用在工业机械臂操控、空间在轨服务、自动驾驶和现实增强等领域。本文对基于单幅图像的刚体目标姿态过程、方法分类及其现存问题进行了整体综述。通过利用单幅刚体目标图像实现多自由度姿态估计的各类方法进行总结、分类及比较,重点论述了姿态估计的一般过程、估计方法的演进和划分、常用数据集及评估准则、研究现状与展望。目前,多自由度刚体目标姿态估计方法主要针对单一特定应用场景具有较好的效果,还没有通用于
其他文献
现有卷积神经网络(convolutional neural network,CNN)利用卷积层和激活函数的叠加,构建复杂非线性函数拟合输入数据到输出标签的转换关系,这种端到端的学习方式严重影响了CNN特征图与先验知识的融合,导致其对训练样本数量和质量敏感,同时增加了CNN特征图可解释性难度。本文从深度学习建模方式角度出发,以遥感图像特征表达及其可解释性为切入点,搭建传统遥感图像先验知识与CNN的桥
英国电影:《The Iron Lady铁娘子》英文片名:The Iron Lady片名:铁娘子更多片名:铁娘子:撒切尔夫人导演:菲利达·劳埃德编剧:艾比·摩根Abi Morgan摄影:艾略特·戴维斯Elliot
  本文介绍一种具有机械消泡功能的新型塔组件,并对其消泡性能进行实验研究和机理分析。研究结果表明:新型塔组件具有良好的消泡性能,在相同的气液流量下,塔板压降、泡沫层高度
目的激光雷达实时定位与建图(simultaneous localization and mapping,SLAM)是智能机器人领域的重要组成部分,通过对周边环境的3维建模,可以实现无人驾驶车辆的自主定位和精准导航。针对目前单个车辆激光雷达建图周期长、算力需求大的现状,提出了基于边缘计算的多车协同建图方法,能够有效地负载均衡,在保证单个车辆精准定位的同时,增加多个车辆之间的地图重用性。方法构建基于阈
会议
目的区域推荐网络(region proposal network,RPN)与孪生网络(Siamese)相结合进行视频目标跟踪,显示了较高的准确性。然而,孪生RPN网络(Siamese region proposal network, Siam RPN)目标跟踪器依赖于密集的锚框策略,会产生大量冗余的锚框并影响跟踪的精度和速度。为了解决该问题,本文提出了孪生导向锚框RPN网络(Siamese-gui
目的深度学习在自动驾驶环境感知中的应用,将极大提升感知系统的精度和可靠性,但是现有的深度学习神经网络模型因其计算量和存储资源的需求难以部署在计算资源有限的自动驾驶嵌入式平台上。因此为解决应用深度神经网络所需的庞大计算量与嵌入式平台有限的计算能力之间的矛盾,提出了一种基于权重的概率分布的贪婪网络剪枝方法,旨在减少网络模型中的冗余连接,提高模型的计算效率。方法引入权重的概率分布,在训练过程中记录权重参
目的少数民族服装款式结构复杂,视觉风格各异。由于缺少民族服装语义标签、局部特征繁杂以及语义标签之间存在相互干扰等因素导致少数民族服装图像解析准确率和精度较低。因此,本文提出了一种融合视觉风格和标签约束的少数民族服装图像解析方法。方法首先基于本文构建的包含55个少数民族的服装图像数据集,按照基本款式结构、着装区域、配饰和不同视觉风格自定义少数民族服装的通用语义标签和民族语义标签,同时设置4组标注对,
  本文对微通道内制备固体脂质纳米粒的过程进行研究,实验考察了水相中表面活性剂浓度、脂相浓度、脂相流速、水相流速等参数对SLN粒径及粒径分布的影响。结果表明:在考察的
目的立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权