论文部分内容阅读
A comprehensive description of the key factors affecting evacuations at fire scenes is necessary for accurate simulations. An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and geographic information system (GIS) data to model the occupant response. The building entities are gener-ated for FDS simulation while the spatial analysis on GIS data represents the occupant’s knowledge of the building. The influence of the fire is based on a hazard assessment of the combustion products. The agent behavior and decisions are affected by environmental features and the fire field. A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors includ-ing occupants, building geometry, and fire disaster during the evacuation. The results can be used for the assessments of building designs regarding fire safety.
A comprehensive description of the key factors affecting evacuations at fire scenes is necessary for accurate simulations. An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and The building entities are gener-ated for FDS simulation while the spatial analysis on GIS data represents the occupant's knowledge of the building. The influence of the fire is based on a hazard assessment of the combustion products. The agent behavior and decisions are affected by environmental features and the fire field. A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors includ-ing occupants, building geometry, and fire disaster during the evacuation. The results can be used for the assessments of building designs regarding fir e safety.