论文部分内容阅读
数字语音在当今应用非常广泛,大量的语音流产生了巨大的网络带宽和服务器存储空间的消耗.因此,在保持听觉效果基本不受影响的前提下,对语音进行有损压缩,降低其比特率是非常重要的.针对压缩语音的共振峰包络提出了一种新颖的在线字典学习方法.不同于一般的线性方法,该方法通过对字典中的原子进行频移,使其能更好地进行共振峰拟合.通过使用希尔伯特变换,能快速并精确地确定最优频移量.实验结果表明,在还原近似度下限为99.5%的前提下,经过该方法压缩后,比特数比原包络平均减少了99%.因此,该方法能适用于对传输带宽或存储空间有