论文部分内容阅读
Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology,widely applied in HSLA steel plate production.However,there are still certain limitations,especially for thicker plate.The rolling schedule includes a long holding period (HP) after the roughing stage to allow the temperature to fall sufficiently for optimised TMCP during finishing.Intermediate Forced Cooling (IFC) applied during the HP can increase productivity by decreasing the required hold time,can restrict austenite grain growth,and can also improve the subsequent strain penetration in thick plate with further metallurgical benefits.Multi-pass plane strain compression (PSC) tests have been performed on the thermomechanical compression (TMC) machine at Sheffield University including different severities of IFC.Clearly it is impossible to simulate all aspects of the temperature and strain gradients present in thick plates in laboratory specimens,and most of the tests were conducted at temperatures and strains calculated by Finite Element modelling as relevant to specific positions through the plate thickness.However,some aspects of the gradients were addressed with tests using cold platens.The results have indeed shown that IFC can shorten the HP and reduce austenite grain growth and its variation across thick plate.
Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology, widely applied in HSLA steel plate production. However, there are still certain limitations, especially for thicker plates. period (HP) after the roughing stage to allow the temperature to fall sufficiently for optimized TMCP during finishing.Intermediate Forced Cooling (IFC) applied during the HP can increase productivity by decreasing the required hold time, can restrict austenite grain growth, and can also improve the subsequent strain penetration in thick plate with further metallurgical benefits. Multi-pass plane strain compression (PSC) tests have been performed on the thermomechanical compression (TMC) machine at Sheffield University including different severities of IFC. Clearly it is impossible to simulate all aspects of the temperature and strain gradients present in thick plates in laboratory specime ns, and most of the tests were conducted at temperatures and strains calculated by Finite Element modeling as relevant to specific places through the plate thickness. Despite some of the gradients were addressed with tests using cold platens. the results have positive looks that IFC can shorten the HP and reduce austenite grain growth and its variation across thick plate.