论文部分内容阅读
通过对简单遗传算法的理论分析,得出了复制、杂交、变异等算子的每次作用均相当于对所作用的个体进行一次线性变换。因此,通过对传统遗传算子进行修改,作者提出了非线性遗传算法。本文发现规范化操作对算法的计算效率有很大的影响,并且给出各遗传算子的一种等价线性表示。因此,如果针对不同的优化问题动态的进行规范化操作及遗传算子的选择,将会大大提高算法的效率。本文提出一种新的自调整非线性遗传算法(Self-Ajusting Nonlinear Genetic Algorithm,SANGA),该算法通过规范化操作的动