论文部分内容阅读
在阿尔茨海默病(Alzheimer′s disease,AD)诊断方法中,通过对脑图像分析已成为准确诊断的一种重要手段.针对从单一脑图像模态磁共振图像(MRI)中提取的特征,提出了一种基于主成分分析(PCA)和线性鉴别分析(LDA)融合的AD分类识别算法.该方法首先对从MRI中获取的特征进行PCA,对低维的特征进行LDA获取组合特征向量,并采用最邻近算法,利用获取的组合特征向量对未知状态类型进行分类识别.实验表明,该算法与其他相关算法相比,具有较高的识别准确率、敏感性、特异性,这说明了算法的有效性.