论文部分内容阅读
The structure variation of deformed austenite during the relaxation stage after deformation at various temperatures in an Nb-B ultra low carbon bainitic steel and Fe-Ni alloy was studied by the thermo-simulation. Optical microscope and TEM were ap- plied to analyze the microstructure after RPC (Relaxation-precipitation-controlling phase transformation technique) and the evolution of dislocation configuration. The particle tracking autoradiography (PTA) technique, revealing the distribution of boron, was em- ployed to show the change of boron segregation after different relaxation times. The results indicate that during the relaxation stage the recovery occurs in the deformed austenite, the dislocations rearrange and subgrains form. During the subsequent cooling the boron will segregate at the boundaries of subgrains.
The structure variation of deformed austenite during the relaxation stage after deformation at various temperatures in an Nb-B ultra low carbon bainitic steel and Fe-Ni alloy was studied by the thermo-simulation. Optical microscope and TEM were ap- plied to analyze the microstructure after RPC (Relaxation-precipitation-controlling phase transformation technique) and the evolution of dislocation configuration. The particle tracking autoradiography (PTA) technique, revealing the distribution of boron, was em- ployed to show the change of boron segregation after different relaxation times. The results indicate that during the relaxation stage the recovery occurs in the deformed austenite, the dislocations rearrange and subgrains form. During the subsequent cooling the boron will segregate at the boundaries of subgrains.