南方红豆杉内生菌及紫杉烷类产物的初步鉴定

来源 :中山大学学报(自然科学版) | 被引量 : 0次 | 上传用户:linlijun002
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
摘要:和接受学习相比,探究题型的学习具有更强烈的问题性、实践性、参与性和开放性。自主学习是一种学习者在总体教学目标的宏观调控下,在教师的指导下,根据自身条件和需要完成具体学习目标的模式,本着对数学探究性问题的学习,教师要放手给学生必要的个人空间,培养学生充分的自信心,为不同个性特点的学生提供必要的发展空间,通过正确的引导来完成课题学习。  关键词:探究性问题;自主学习;科学引导  新课程的改革使教
一、 动物界的“数学家”  一直以来,人们都认为动物的思维比较简单,事实上,许多动物的头脑并非像人们想象中的那样愚钝,它们拥有独特的思维方式,有些思维甚至为人类研究数学起到了巨大的促进作用.下面就让我们一起见识动物界中的一些几何天才吧!  蚂蚁是出色的“计算专家”. 英国科学家兴斯顿做过一个有趣的实验,他把一只死蚱蜢切成三块,第二块比第一块大一倍,第三块比第二块大一倍,当一群蚂蚁发现这食物40分钟
数学学习有两条线:一条是明线,即数学知识的学习;一条是暗线,即数学思想方法的学习. 而数学思想方法是数学的精髓,是我们形成良好认知结构的纽带,是知识转化为能力的桥梁. 数学思想在“走进图形世界”这章也有所渗透,下面让我们一起来感受一下.  一、 分类思想  分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法.  例1 将图1所示的几何体进行分类,并
对于20世纪以前的欧洲来说,红色不仅影响着人们的生活,还影响着各国的政治和经济。追求红色染料的历程甚至在悄悄改变着西班牙王室风雨多舛的命运。在遥远海岸发现的小虫:胭
通过在氮杂对环吩大环分子中引入氯取代基和甲基对其进行化学修饰,成功合成新的氮杂对环吩主体化合物,并对其与萘衍生物客体2,3二羟基萘6磺酸,α萘酚,β萘酚及2,6二羟基萘包
课本上的习题,看似很平常,实则具有极大的拓展空间.我们不能满足于顺利解决习题,而应由此及彼,层层延伸,步步拓展,从而挖掘知识之间的联系,提高解题能力和学习能力.下面我们
美国数学家克莱因曾对“数学美”作过这样的描述:“音乐能激发或抚慰情怀,绘画能使人赏心悦目,诗歌能动人心弦,哲学能使人获得智慧,科技可以改善物质生活,而数学却能提供以上一切!”如果蚂蚁也听过克莱因这话,那它在“蚂蚁吃食”问题中肯定受益匪浅.  【典型例题】 一只蚂蚁在一个正方体的顶点A处,而正方体的顶点B处残留一些面包屑,如图1所示,现在蚂蚁想尽快地搬走面包屑,那么它所走的最短路线是怎样的?在图上画
“走进图形世界”是同学们接触几何图形的开端,这部分内容在中考中也占据了一席之地,下面我们一起“走进”中考题中的“图形世界”.  第一部分——三视图  例1 (2014·随州)如图1所示的物体的俯视图是( ).  【解析】 本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图,故选D.  例2 (2014·遂宁)一个几何体的三视图如图2所示,这个几何体是( ).  A. 棱柱  B. 圆柱 
太阳系是太阳的疆域,它宛若一座庞大的帝国,八大行星是它的“行省”,行星旁的卫星和分布于这个疆域中的大小天体是它的“属国”.它看上去仿佛是荒芜的,似乎只有地球充满生机,