论文部分内容阅读
提出一种适合于一般连续非线性动态系统建模的新的Runge-Kutta模糊神经网络(RKFNN),证明了RKFNN的存在性.采用传统的Runge-Kutta求积公式构造,实现了对系统的状态变化特性进行学习,解决了直接映射方式对系统的动态轨迹进行学习时存在的精度低等问题,并提出了RKFNN的在线递推学习算法.对连续非线性动态系统进行建模的仿真结果表明,RKFNN方法是一种较好的方法.