论文部分内容阅读
求空间点P_0(x_0,y_0,z_0)到直线a=(x-x_1)/1=(y-y_1)/m=(z-z_1)/n(这里P_1(x_1,y_1,z_1)为直线a上的点,V={1,m,n}为直线a的方向矢量)的距离d,通常直接用距离公式d=|V×P_1P_0|/|V|。本文主要介绍异于用距离公式的几种方法。 设P_0(2,3,1)为直线a外的一点,直线a的方程为:(x+1)/2=y/(-1)=(z-2)/3 方法1 利用两点间的距离公式,只要求出过P_0点且与a垂直的平面与直线a的交点坐标即可。
Find the space point P_0 (x_0, y_0, z_0) to the line a = x-x_1 / 1 = y-y_1 / m = z-z_1 / n where P_1 (x_1, y_1, z_1) the distance d on the point a, V = {1, m, n} is the direction vector of the straight line a), usually directly using the distance formula d = | V × P_1P_0 | / | V |. This article describes several different methods of using different distance formulas. Let P_0 (2, 3, 1) be a point outside the line a, the equation of the line a is: (x + 1) / 2 = y / (-1) = Of the distance formula, as long as the required P_0 points and a vertical plane and a straight line intersection coordinates can be.