论文部分内容阅读
考虑Banach空间E中一类非线性分数阶微分方程边值问题{-Dα0+u(t)=f(t,u(t))t∈Iu(0)=u'(0)=u'(1)=θ解的存在性,其中2〈σ≤3是实数,I=[0,1],Dα0+是标准的Riemann-Liouville导数,f:I×E→E连续,θ为E中的零元.用新的非紧性测度估计技巧,在f满足比较一般的增长条件和非紧性测度条件下,通过凝聚映射的不动点定理获得了该边值问题解的存在性.