【摘 要】
:
硫化锌(ZnS)是一种被广泛使用的光学薄膜材料,因为其透光区宽,易于沉积等特点被广泛用于制作宽光谱薄膜器件.利用太赫兹时域光谱技术(THz-TDS)对硫化锌进行太赫兹光谱特性检
【机 构】
:
首都师范大学物理系 北京100048;北京成像理论与技术高精尖创新中心 北京100048;太赫兹光电子学教育部重点实验室 北京100048;昆明物理研究所 昆明650223
论文部分内容阅读
硫化锌(ZnS)是一种被广泛使用的光学薄膜材料,因为其透光区宽,易于沉积等特点被广泛用于制作宽光谱薄膜器件.利用太赫兹时域光谱技术(THz-TDS)对硫化锌进行太赫兹光谱特性检测.通过实验分析并进行光学参数计算,得到硫化锌在0.2~2.4 THz频段内透过率随着频率增大而增大,折射率在2.88~2.94之间(相较于可见光波段大些),从吸收谱看,ZnS在0.23、0.39、0.81、2.2 THz处存在吸收峰;且介电常数的实部在8.3~8.7之间,虚部在0~0.08之间,该研究为硫化锌材料在太赫兹频段的应用提供了参考.
其他文献
为了实现复杂电网环境下对基波和任意次谐波精细化检测补偿的需求,基于传统ip-iq检测法设计了一种对基波和任意次谐波电流的多功能精细检测新方法.基于瞬时无功功率理论给出
针对不同深度肌肉肌电信号检测的电极间距不明确的问题,首先分析了单纤维肌电信号仿真模型中电极间距和肌纤维深度对肌电信号的影响;然后结合尺侧腕伸肌和膈肌肌电信号采集实
继前两篇连载介绍了三菱梯形图编程软件GX Developer后,本文介绍梯形图转单片机HEX软件的使用方法和具体操作。1转换软件界面笔者使用的是中文版梯形图转单片机HEX软件V1.43Bate12。该软件是一个压缩包,解压后双击该目录中的“梯形图转单片机HEX软件V1.43Bate12. exe”的图标即可运行该软件,其界面如图3-1所示。
直流系统可为变电站内控制回路、信号回路、继电保护自动装置、断路器分合操作和事故照明等负荷提供可靠稳定的电源,是变电站安全运行的心脏。直流屏主要由交流输入单元、充电单元、蓄电池组与直流馈电单元,以及相关监控部件等组成,它们分别具有交流输入整流、蓄电池充放电与直流负荷配电等功能[1]。在此基础上,电压调整单元、电池巡检单元、绝缘监察与微机监控单元一起完成直流屏的通信、保护和监控功能。
1 现场情况在电力系统中,断路器作为电网主要开断设备,直接崩毁的事故并不多见。这是因为断路器相对其他设备绝缘裕量是比较高的,在各种过电压侵袭电力设备过程中,绝缘相对薄弱环节(如电缆头、电压互感器等)会先被过电压击穿,一般保护会及时将故障部位切除,以避免事故扩大。去年六月,油田电网南部地区35 kV某变电站发生一起断路器崩毁事故,事故调查情况如下。
提出了一种基于带状线结构的探针耦合馈电的微带贴片天线。天线工作在X波段,贴片形状为正方形,宽度为9.3mm;馈线部分经由微带线转带状线结构后弯折,上部形成L型探针的结构。在X波段VSWR<2的带宽约为16.30%。在垂直方向的增益约为8.78dB,交叉极化比约为33.20dB。在这个天线的基础上设计了类似结构的PIFA天线,对天线带宽提升到19.1%的同时,使得贴片垂直方向的交叉极化比约为45.3dB,与之前提出的天线相比该项指标提升超过了10dB。在实际应用方面,这种天线由于极化隔离度较好,则不容
莱钢为周边农村供电的6.0 kV变电所高压系统进行升级改造,由工业供电过渡到农网供电,在满足最新负荷供电需求和各种技术参数、性能的基础上,优化总体布局和接线形式,新增6.0 kV馈出线16回路、站用变2套、综合自动化系统设备1套、并联电容补偿装置2套、小电流接地选线装置2套、交直流控制屏4套。在对35 kV变电站内现有6.0 kV系统升级改造前,按制定停电方案,增加临时供电设施,分段进行负荷转移。
由无人机携带的通信中继装备(如基站、无线电台等)在提高网络容量、扩大网络覆盖范围方面具有巨大的潜力,但是却存在着因自带电源有限而飞行时间短、难以建立无人机与地面站
1 存在的问题我公司一高压开关站直流合闸电源正极、控制电源正极电压波动范围高达67~143 V,直流屏直流电源“直流母线电压不平衡故障”报警频发,影响控制系统尤其是综合保护器的安全稳定运行。2 查找分析拉开各个高压开关柜的控制电源开关、合闸电源开关后,控制室直流屏直流合闸电源电压、控制电源电压恢复正常。依次再送上各个高压开关站控制电源、合闸电源开关,发现是电动机回路引起直流母线电压波动。原电动机控制回路如图1所示。
针对当前地铁定位系统定位严重依赖于地面应答器的技术难题,提出了一种利用二维码定位的虚拟应答器的测试方法。在高精度时钟同步的基础上,设计了新型数据融合算法,制作了数据解调电路,构建了作对称三备份高可用性系统,对该测试系统进行了验证。试验结果表明,该测试方法可借助二维码实现列车的自主定位与启停,实时显示列车状态,定位精度可达厘米,且无需后继的地面应答器的人工维修,节省大量成本。同时,为实现列车自动驾驶的测试提供了可靠解决方案。