论文部分内容阅读
针对航天器非平稳随机振动信号模态频率密集的特点,提出了基于经验模式分解EMD(Empirical Mode Decomposition)的多分量过程神经网络PNN(ProcessNeural Network)自回归模型.通过EMD对原始时间序列进行分解,使之成为一组不同尺度的局部正交本征模函数IMF(Intrinsic Mode Functions),利用PNN对每个IMF分别进行时变参数分析并以此确定其时变自功率谱密度,对所有分量的时变自功率谱密度通过叠加进行重构,以此得到原始信号的时变自功率谱密度.仿