论文部分内容阅读
Based on experimental results that VH0.81/MgH2 interface was found during the process of mechanically milling MgH2+5at.%V nanocomposite, H atoms diffusion and adsorption properties of MgH2-V systems have been investigated by using a first-principles plane-wave pseudopotential method based on the density functional theory. The results are as follows. When VH/MgH2 interface is formed due to V alloying MgH2 phase, the vacancy formed by H atoms near VH phase region is more stable than that without V alloying, while vacancy near MgH2 phase region is less stable than that without V alloying. During the process of H atoms diffusion after V alloying, the max migration barrier energy of H atoms in MgH2-V systems is reduced compared with that of MgH2 phase, which means that H atoms diffuse easily. When H diffuses into VH from MgH2 across VH/MgH2 interface, among three substitutions such as the replacement of H for V vacancy, or interstitial site or V atoms, the replacement of H for V vacancy has the strongest diffusion ability, next interstitial site, and finally V atoms site. As far as H adsorbed on different surfaces of VH phase is concerned, physical adsorption is carried out more easily than chemical adsorption, and the behavior of H atoms adsorbed on the surface near VH phase region can be found more easily than that near MgH2 phase region.
Based on experimental results that VH 0.81 / MgH2 interface was found during the process of mechanically milling MgH2 + 5 at.% V nanocomposite, H atoms diffusion and adsorption properties of MgH2 -V systems have been investigated by using a first-principles plane-wave When VH / MgH2 interface is formed due to V alloying MgH2 phase, the vacancy formed by H atoms near VH phase region is more stable than that without V alloying, while vacancy Near the MgH2 phase region is less stable than that without V alloying. During the process of H atoms diffusion after V alloying, the max migration barrier energy of H atoms in MgH2-V systems is reduced compared to that of MgH2 phase, which means that H When diffuse into VH from MgH2 across VH / MgH2 interface, among three substitutions such as the replacement of H for V vacancy, or interstitial site or V atoms, the replacement of H for V vacancy has the strongest diffusion ability, next interstitial site, and finally V atoms site. As far as H adsorbed on different surfaces of VH phase is concerned, physical adsorption is carried out more easily than chemical adsorption, and the behavior of H atoms adsorbed on the surface near VH phase region can be found more easily than that near MgH2 phase region.