论文部分内容阅读
针对传统的核相关滤波器(KCF)跟踪算法在目标快速运动、尺度变化和遮挡情况下通常会导致跟踪失败的问题,在传统的KCF算法的基础上引入极限学习机(ELM),提出一种基于ELM和KCF的自适应目标跟踪方法。根据过去时刻的目标位置信息,利用ELM预测出当前帧目标的可能位置;在该位置上以目标区域为基础进行多尺度目标图像特征采样,通过KCF确定目标的最终位置和最佳尺度;通过计算目标位置响应图的振荡程度来自适应地改变模型的更新速率。在36组公开视频序列上对所提算法与6种当前主流的相关滤波跟踪算法进行了实验,所提