论文部分内容阅读
A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC I-V curves with the self-heating effect is obtained.
A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC IV curves with the self-heating effect is obtained.