论文部分内容阅读
软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,基于数据驱动的神经网络是软测量建模的主要工具之一。而在建模数据的采集过程中,主导变量的采集相对辅助变量要困难得多,由此产生了大量缺失标签的数据。但传统的软测量建模方法却忽视了这些无标签数据,只利用少量的有标签数据建模,从而影响了模型的预测精度。为了解决标签缺失的问题,采用最近邻算法对无标签数据进行伪标记,同时设计了由卷积操作与门限循环单元神经网络(GRU)结合的网络结构来进一步利用无标签数据,提取不同时刻数