论文部分内容阅读
针对U-Net分割小体积肺结节效果较差的问题,提出一种基于深度迁移学习的分割方法,利用分块式叠加微调(BSFT)策略辅助分割肺结节。首先,利用卷积神经网络学习自然图像大数据集的特征信息;然后,将所学特征迁移到进行肺结节图像小数据集分割的网络,从该网络最后一个下采样层开始逐块释放、微调训练,直到网络完成最后一层的叠加;最后,定量分析Dice相似性系数,以确定最佳分割网络。实验结果表明,BSFT在LUNA16肺结节公开数据集上的Dice值达到0. 9179,该策略的性能明显优于主流肺结节分割算法。