论文部分内容阅读
K均值聚类属于无监督学习,具有简单、易用的特点,是一种广泛使用的聚类分析方法.然而,对于非凸、稀疏及模糊的非线性可分数据,其聚类效果不佳.通过引入粒计算理论,采用邻域粒化技术,提出了一种邻域粒K均值聚类方法.样本在单特征上使用邻域粒化技术构造邻域粒子,在多特征上使用邻域粒化技术形成邻域粒向量.通过定义邻域粒与邻域粒向量的大小、度量和运算规则,提出两种邻域粒距离度量,并对所提出的邻域粒距离度量进行了公理化证明.最后,采用多个UCI数据集进行实验,将K均值聚类算法分别结合两种邻域粒距离度量,在邻域参数和距离度量两个方面与经典聚类算法进行了比较,其结果表明了所提出的邻域粒K均值聚类方法的可行性和有效性.