论文部分内容阅读
基于和声搜索和蚁群算法优化后的BP神经网络,提出一种风电机组齿轮箱故障诊断方法。将蚁群算法的信息素更新机制用于和声搜索算法中,提高和声搜索算法的收敛速度,并利用和声搜索算法的个体扰动策略和随机搜索机制改善蚁群算法过早收敛的问题。利用该方法对BP神经网络的权值和阈值进行优化,克服BP神经网络算法易陷入局部最优解的缺点,提高神经网络的训练效率和收敛速度。测试结果表明,该方法诊断结果正确且精度高,将经和声蚁群耦合算法优化后的BP神经网络用于风电机组齿轮箱故障诊断是有效的。