一类多乘积问题的全局优化方法

来源 :河南师范大学学报:自然科学版 | 被引量 : 0次 | 上传用户:tswdforu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
给出一类多乘积问题(P)的全局优化方法.首先将(P)转化为其等价问题(Q),利用变量代换,把(Q)写成(EQ)形式,然后建立(EQ)松弛线性规划(RLEQ),通过求解一系列线性规划问题,不断更新最优值的上下界,证明了所给算法的收敛性,数值实验表明算法是可行的.
其他文献
首先研究了半空间上一类满足Dirichlet边值问题的分数阶Laplace方程与其对应的积分方程解的等价性;然后,基于两个方程解的等价性,运用积分形式的移动平面法证明了积分方程在
主要证明一类高阶修正的Camassa-Holm方程拥有哈密顿结构和建立在H^2(R)适定性结果.首先证明高阶修正的Camassa—Holm方程拥有两个重要的守恒律.然后利用这两个重要的守恒律证明
利用区域分解方法,对模拟大气重力波在中高层大气中非线性传播过程的数值模式进行了并行化处理,从而建立了并行数值模式.在两个并行机群上对并行数值模式的测试结果表明:在千兆以
格在公钥密码分析领域中有着十分重要的地位.1996年,Coppersmith以多项式方程求小值解的问题为桥梁,把攻击RSA密码体制的问题转换为求格中短向量的问题,开辟了基于格的RSA密
考虑Ricci流(M-n,g(t))上的非线性抛物方程正解的梯度估计:ut=△u+au1n u+bu,其中a,b是两个实常数.作为应用,得到了一些Harnack不等式.
对广泛应用于金融、证券投资等实际问题中的带指数的多项式函数的极小值问题(P1)提出了一种有效的全局优化算法.从理论上证明了本算法的收敛性,数值实验表明提出的方法是可行和
考虑了半空间Rn+上一个包含Bessel位势的积分方程:u(x)=∫Rn+{gα(x-y)-gα(x-y)}uβ(y)dy,x∈Rn+,其中α〉0,β〉1,x是x关于超平面xn=0的对称点,gα(x)是Bessel核.首先利用结合压缩算子的
主要给出了*-n-仿正规算子的一些性质:若T是*-n-仿正规算子,则T的B-Weyl谱满足谱映射定理;若T是*-n-仿正规算子,则T有谱的连续性.
考虑到现实金融环境中存在着大量的模糊性,在标的股票遵循几何分数Liu过程的假设下,研究了幂型期权定价问题.给出了幂期权在模糊金融市场条件下的定价模型,并在不同参数值α
考虑具有常数存放率的带Holling-Ⅱ类功能性反应函数的捕食—被捕食系统的动力性态.应用规范形理论和平面系统的定性理论,研究了生物模型的定性性质,得到了平衡点在各种不同