论文部分内容阅读
The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.
The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimized to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.