论文部分内容阅读
《电磁感应现象的两类情况》是人教版選修3-2中第四章第5节的内容,是对楞次定律、法拉第电磁感应定律巩固和提高,所以不是新知识.虽非新知,但笔者在教授此课过程中发觉教材所探讨的问题有一定深度,有些关键地方跳跃性较大,且教材内容编排上某些内容还缺乏严谨,导致学生学习起来在认知方面有困难,因此,笔者对这一节教材内容进行了仔细的阅读,有几点思考汇集成文,希望同仁指点.
1 这样的标题不合适
文章第一小节以《电磁感应现象中感生电场》为标题,但是文中对感生电场的概念以其特征描述都是一带而过,倒是何为非静电力的解释泼墨较多.当然,这样安排自有道理,因为感生电动势中何谓非静电力是重点,也是难点,而在此时感生电场显然非重点,因为麦克斯韦电磁场理论将在3-4中有详细的阐述,故不宜过多说明,有鉴于此,故笔者认为该小节标题定为《电磁感应现象中感生电场》欠妥,建议改成《感生电动势的非静电力》.
2 这样的表述缺乏严谨
《电磁感应现象中感生电场》这一小节的最后写到:假定导体中的自由电荷是正电荷,他们定向运动的方向就是感应电流的方向,也就是感生电场的方向.因此实际问题中我们常要由磁场的方向和强弱变化情况来判断感生电场的方向,或者相反.这时就要根据楞次定律用右手定则来确定他们之间的关系.
笔者认真阅读这一段文字之后,发现有一些地方表述不严谨,值得商榷.第一,文中用的是“定向运动”而我们常说电流是电荷定向移动形成的,因为电荷除了定向移动之外还在做无规则热运动;第二,右手定则是用来判断部分导体切割磁感线产生感应(动生)电流方向的,而在此文中,产生的是感生电流,显然不能用右手定则,结合文章的意思,可以明确编者所要描述的应该是要根据楞次定律用安培定则来确定他们之间的关系;第三,导体中正电荷定向运动的方向就是感应电流的方向,也就是感生电场的方向与常要由磁场的方向和强弱变化情况来判断感生电场的方向之间并无因果关系,所以文中的描述出现逻辑混乱,笔者建议将“常要由”改成“常可由”.
3 电子感应加速器中通过电磁铁的电流的作用
电子感应加速器可以利用涡旋电场对电子进行加速,它的基本原理如图1所示, 上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子可在真空室中做圆周运动.当然结构并不复杂,但是要理解为什么可以使电子加速,关键就是要清楚电子感应加速器中通过电磁铁的电流在加速器中产生的作用是什么?而在文章中对这一方面并没有详细的解释,导致学生理解困难.
其实,通过电磁铁中的电流是用频率约为数十赫兹的强大交变电流,这样使电磁铁两极间的磁感应强度B变化,从而在环形真空室中感应出很强的涡旋电场,电子枪将电子注入真空室,电子在涡旋电场的作用下被加速.为了使得电子获得较大能量,要循环加速,即让电子做圆周运动,做圆周运动的向心力由洛伦兹力提供.从上面分析可以看出变化电流产生的变化磁场在感应加速器中身兼双职(1)变化的磁场B所激发的感生电场E使电子不断被加速;(2) 磁场B对电子施加的洛伦兹力充当维持电子作圆周运动的向心力.
4 如何理解动生电动势中非静电力与洛伦兹力有关!
在教学过程中一再强调洛伦兹力不做功,但是在文中又特别说明非静电力与洛伦兹力有关,导致学生的认知冲突,不能理解,甚至有学生怀疑洛伦兹力不做功的正确性,并且洛伦兹力不做功虽然可以证明,但要用到高等数学知识,要求较高,不宜给学生介绍.为了缓解学生的认知冲突,笔者想到了用初等数学知识证明导体匀速直线运动这一特殊情况下洛伦兹力不做功,证明如下:
如图2所示,当金属棒以速度v向右匀速直线运动时,不考虑自由电子的热运动,可认为电子在磁场中也是以速度v向右匀速直线运动,设与速度v对应的洛伦兹力为F1=qvB,由于v恒定,所以F1的大小也恒定,即电子在竖直方向做初速度为零的匀加速直线运动,加速度为a.竖直方向做匀加速直线运动,在t时刻速度v′=at,设与v′相对应的洛伦兹力为F2,此时洛伦兹力F为F1、F2的合力,再设F与竖直方向的夹角为α有
tanα=F1F1=qv′BqvB=atv,
设合速度ω与竖直方向的夹角为θ有
tanθ=vv′=vat.
根据上面两式可得tanαtanθ=1,也就是α θ=90°即力的方向与速度方向的夹角为90°,所以不做功.上面的证明虽然是特殊情况下的,但是也有一定的说服力,不仅如此,上面的证明还有助于理解动生电动势中非静电力与洛伦兹力有关的实质.
无论对学生的学还是教师的教,教材都是最重要的教育资源,所以作为教师对教材进行认真思考就显得尤为重要.但是由于笔者水平有限,上面的点滴思考不一定正确,请同仁们不吝赐教.
1 这样的标题不合适
文章第一小节以《电磁感应现象中感生电场》为标题,但是文中对感生电场的概念以其特征描述都是一带而过,倒是何为非静电力的解释泼墨较多.当然,这样安排自有道理,因为感生电动势中何谓非静电力是重点,也是难点,而在此时感生电场显然非重点,因为麦克斯韦电磁场理论将在3-4中有详细的阐述,故不宜过多说明,有鉴于此,故笔者认为该小节标题定为《电磁感应现象中感生电场》欠妥,建议改成《感生电动势的非静电力》.
2 这样的表述缺乏严谨
《电磁感应现象中感生电场》这一小节的最后写到:假定导体中的自由电荷是正电荷,他们定向运动的方向就是感应电流的方向,也就是感生电场的方向.因此实际问题中我们常要由磁场的方向和强弱变化情况来判断感生电场的方向,或者相反.这时就要根据楞次定律用右手定则来确定他们之间的关系.
笔者认真阅读这一段文字之后,发现有一些地方表述不严谨,值得商榷.第一,文中用的是“定向运动”而我们常说电流是电荷定向移动形成的,因为电荷除了定向移动之外还在做无规则热运动;第二,右手定则是用来判断部分导体切割磁感线产生感应(动生)电流方向的,而在此文中,产生的是感生电流,显然不能用右手定则,结合文章的意思,可以明确编者所要描述的应该是要根据楞次定律用安培定则来确定他们之间的关系;第三,导体中正电荷定向运动的方向就是感应电流的方向,也就是感生电场的方向与常要由磁场的方向和强弱变化情况来判断感生电场的方向之间并无因果关系,所以文中的描述出现逻辑混乱,笔者建议将“常要由”改成“常可由”.
3 电子感应加速器中通过电磁铁的电流的作用
电子感应加速器可以利用涡旋电场对电子进行加速,它的基本原理如图1所示, 上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子可在真空室中做圆周运动.当然结构并不复杂,但是要理解为什么可以使电子加速,关键就是要清楚电子感应加速器中通过电磁铁的电流在加速器中产生的作用是什么?而在文章中对这一方面并没有详细的解释,导致学生理解困难.
其实,通过电磁铁中的电流是用频率约为数十赫兹的强大交变电流,这样使电磁铁两极间的磁感应强度B变化,从而在环形真空室中感应出很强的涡旋电场,电子枪将电子注入真空室,电子在涡旋电场的作用下被加速.为了使得电子获得较大能量,要循环加速,即让电子做圆周运动,做圆周运动的向心力由洛伦兹力提供.从上面分析可以看出变化电流产生的变化磁场在感应加速器中身兼双职(1)变化的磁场B所激发的感生电场E使电子不断被加速;(2) 磁场B对电子施加的洛伦兹力充当维持电子作圆周运动的向心力.
4 如何理解动生电动势中非静电力与洛伦兹力有关!
在教学过程中一再强调洛伦兹力不做功,但是在文中又特别说明非静电力与洛伦兹力有关,导致学生的认知冲突,不能理解,甚至有学生怀疑洛伦兹力不做功的正确性,并且洛伦兹力不做功虽然可以证明,但要用到高等数学知识,要求较高,不宜给学生介绍.为了缓解学生的认知冲突,笔者想到了用初等数学知识证明导体匀速直线运动这一特殊情况下洛伦兹力不做功,证明如下:
如图2所示,当金属棒以速度v向右匀速直线运动时,不考虑自由电子的热运动,可认为电子在磁场中也是以速度v向右匀速直线运动,设与速度v对应的洛伦兹力为F1=qvB,由于v恒定,所以F1的大小也恒定,即电子在竖直方向做初速度为零的匀加速直线运动,加速度为a.竖直方向做匀加速直线运动,在t时刻速度v′=at,设与v′相对应的洛伦兹力为F2,此时洛伦兹力F为F1、F2的合力,再设F与竖直方向的夹角为α有
tanα=F1F1=qv′BqvB=atv,
设合速度ω与竖直方向的夹角为θ有
tanθ=vv′=vat.
根据上面两式可得tanαtanθ=1,也就是α θ=90°即力的方向与速度方向的夹角为90°,所以不做功.上面的证明虽然是特殊情况下的,但是也有一定的说服力,不仅如此,上面的证明还有助于理解动生电动势中非静电力与洛伦兹力有关的实质.
无论对学生的学还是教师的教,教材都是最重要的教育资源,所以作为教师对教材进行认真思考就显得尤为重要.但是由于笔者水平有限,上面的点滴思考不一定正确,请同仁们不吝赐教.