DeepLabv3plus-IRCNet:小目标特征提取的图像语义分割

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:KingofPriser
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的为了解决经典卷积神经网络无法满足图像中极小目标特征提取的准确性需求问题,本文基于Deep Labv3plus算法,在下采样过程中引入特征图切分模块,提出了Deep Labv3plus-IRCNet(IR为倒置残差(inverted residual, C为特征图切分(feature map cut))图像语义分割方法,支撑图像极小目标的特征提取。方法采用由普通卷积层和多个使用深度可分离卷积的倒置残差模块串联组成的深度卷积神经网络提取特征,当特征图分辨率降低到输入图像的1/16时,引入特征图切分模
其他文献
目的立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权
刚体目标姿态作为计算机视觉技术的重点研究方向之一,旨在确定场景中3维目标的位置平移和方位旋转等多个自由度,越来越多地应用在工业机械臂操控、空间在轨服务、自动驾驶和现实增强等领域。本文对基于单幅图像的刚体目标姿态过程、方法分类及其现存问题进行了整体综述。通过利用单幅刚体目标图像实现多自由度姿态估计的各类方法进行总结、分类及比较,重点论述了姿态估计的一般过程、估计方法的演进和划分、常用数据集及评估准则
黑烟车辆逐渐成为城市的主要污染源之一,针对黑烟的视频车辆检测方法具有效果好、成本低、应用面广和不妨碍交通等优点,但是仍存在误检率高、新方法可解释性差的缺陷。为了总结归纳视频黑烟检测算法的研究进展,本文对2016—2019年公开发表的文献进行总结。视频黑烟检测框架按顺序可以分为监控视频预处理、疑似黑烟区域选取、黑烟特征选取、分类识别和算法性能分析几部分,而且此顺序可以根据实际情况微调。本文介绍了视频
对流体图像序列进行运动分析一直是流体力学、医学和计算机视觉等领域的重要研究课题。从图像对中提取的密集精确的速度矢量场能够为许多领域提供有价值的信息,基于光流法的流体运动估计技术因其独特的优势成为一个有前途的方向。光流法可以获得具有较高分辨率的密集速度矢量场,在小尺度精细结构的测量上有所改进,弥补了基于相关分析法的粒子图像测速技术的不足。此外,光流方法还可以方便的引入各种物理约束,获得较为符合流体运
目的相机外参标定是ADAS(advanced driver-assistance systems)等应用领域的关键环节。传统的相机外参标定方法通常依赖特定场景和特定标志物,无法实时实地进行动态标定。部分结合SLAM(simultaneous localization and mapping)或VIO(visual inertia odometry)的外参标定方法依赖于点特征匹配,且精度往往不高。针