论文部分内容阅读
目的为了解决经典卷积神经网络无法满足图像中极小目标特征提取的准确性需求问题,本文基于Deep Labv3plus算法,在下采样过程中引入特征图切分模块,提出了Deep Labv3plus-IRCNet(IR为倒置残差(inverted residual, C为特征图切分(feature map cut))图像语义分割方法,支撑图像极小目标的特征提取。方法采用由普通卷积层和多个使用深度可分离卷积的倒置残差模块串联组成的深度卷积神经网络提取特征,当特征图分辨率降低到输入图像的1/16时,引入特征图切分模