【摘 要】
:
目的相机外参标定是ADAS(advanced driver-assistance systems)等应用领域的关键环节。传统的相机外参标定方法通常依赖特定场景和特定标志物,无法实时实地进行动态标定。部分结合SLAM(simultaneous localization and mapping)或VIO(visual inertia odometry)的外参标定方法依赖于点特征匹配,且精度往往不高。针
【机 构】
:
上海交通大学,上海200240;安徽酷哇机器人有限公司,芜湖241010
论文部分内容阅读
目的相机外参标定是ADAS(advanced driver-assistance systems)等应用领域的关键环节。传统的相机外参标定方法通常依赖特定场景和特定标志物,无法实时实地进行动态标定。部分结合SLAM(simultaneous localization and mapping)或VIO(visual inertia odometry)的外参标定方法依赖于点特征匹配,且精度往往不高。针对ADAS应用,本文提出了一种相机地图匹配的外参自校正方法。方法首先通过深度学习对图像中的车道线进行检测
其他文献
目的激光雷达实时定位与建图(simultaneous localization and mapping,SLAM)是智能机器人领域的重要组成部分,通过对周边环境的3维建模,可以实现无人驾驶车辆的自主定位和精准导航。针对目前单个车辆激光雷达建图周期长、算力需求大的现状,提出了基于边缘计算的多车协同建图方法,能够有效地负载均衡,在保证单个车辆精准定位的同时,增加多个车辆之间的地图重用性。方法构建基于阈
目的区域推荐网络(region proposal network,RPN)与孪生网络(Siamese)相结合进行视频目标跟踪,显示了较高的准确性。然而,孪生RPN网络(Siamese region proposal network, Siam RPN)目标跟踪器依赖于密集的锚框策略,会产生大量冗余的锚框并影响跟踪的精度和速度。为了解决该问题,本文提出了孪生导向锚框RPN网络(Siamese-gui
目的深度学习在自动驾驶环境感知中的应用,将极大提升感知系统的精度和可靠性,但是现有的深度学习神经网络模型因其计算量和存储资源的需求难以部署在计算资源有限的自动驾驶嵌入式平台上。因此为解决应用深度神经网络所需的庞大计算量与嵌入式平台有限的计算能力之间的矛盾,提出了一种基于权重的概率分布的贪婪网络剪枝方法,旨在减少网络模型中的冗余连接,提高模型的计算效率。方法引入权重的概率分布,在训练过程中记录权重参
目的少数民族服装款式结构复杂,视觉风格各异。由于缺少民族服装语义标签、局部特征繁杂以及语义标签之间存在相互干扰等因素导致少数民族服装图像解析准确率和精度较低。因此,本文提出了一种融合视觉风格和标签约束的少数民族服装图像解析方法。方法首先基于本文构建的包含55个少数民族的服装图像数据集,按照基本款式结构、着装区域、配饰和不同视觉风格自定义少数民族服装的通用语义标签和民族语义标签,同时设置4组标注对,
本文对微通道内制备固体脂质纳米粒的过程进行研究,实验考察了水相中表面活性剂浓度、脂相浓度、脂相流速、水相流速等参数对SLN粒径及粒径分布的影响。结果表明:在考察的
目的立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权
刚体目标姿态作为计算机视觉技术的重点研究方向之一,旨在确定场景中3维目标的位置平移和方位旋转等多个自由度,越来越多地应用在工业机械臂操控、空间在轨服务、自动驾驶和现实增强等领域。本文对基于单幅图像的刚体目标姿态过程、方法分类及其现存问题进行了整体综述。通过利用单幅刚体目标图像实现多自由度姿态估计的各类方法进行总结、分类及比较,重点论述了姿态估计的一般过程、估计方法的演进和划分、常用数据集及评估准则
黑烟车辆逐渐成为城市的主要污染源之一,针对黑烟的视频车辆检测方法具有效果好、成本低、应用面广和不妨碍交通等优点,但是仍存在误检率高、新方法可解释性差的缺陷。为了总结归纳视频黑烟检测算法的研究进展,本文对2016—2019年公开发表的文献进行总结。视频黑烟检测框架按顺序可以分为监控视频预处理、疑似黑烟区域选取、黑烟特征选取、分类识别和算法性能分析几部分,而且此顺序可以根据实际情况微调。本文介绍了视频
对流体图像序列进行运动分析一直是流体力学、医学和计算机视觉等领域的重要研究课题。从图像对中提取的密集精确的速度矢量场能够为许多领域提供有价值的信息,基于光流法的流体运动估计技术因其独特的优势成为一个有前途的方向。光流法可以获得具有较高分辨率的密集速度矢量场,在小尺度精细结构的测量上有所改进,弥补了基于相关分析法的粒子图像测速技术的不足。此外,光流方法还可以方便的引入各种物理约束,获得较为符合流体运