论文部分内容阅读
A novel mesoscopic simulation model is proposed to study the liquid crystal phase behavior of the anisotropic rodlike particles with a soft repulsive interaction,which possesses a modified anisotropic conservative force type used in dissipative particle dynamics.The influences of the repulsion strength and the particle shape on the phase behavior of soft rodlike particles are examined.In the simulations,we observe the formation of the nematic phase and smectic-A phase from the initially isotropic phase.Moreover,we find that shorter soft rodlike particles with anisotropic repulsive interactions can form a stable smectic-B phase.Our results demonstrate that the soft anisotropic purely-repulsive potential between the rodlike particles can reflect the interaction nature between soft rodlike particles in a simple way and is sufficient to produce a range of ordered LC-like mesophases.
A novel mesoscopic simulation model is proposed to study the liquid crystal phase behavior of the anisotropic rodlike particles with a soft repulsive interaction, which possesses a modified anisotropic conservative force type used in dissipative particle dynamics. These influences of the repulsion strength and the particle shape on the phase behavior of soft rodlike particles are examined in the simulations, we observe the formation of the nematic phase and smectic-A phase from the initially isotropic phase. Moreover, we find that shorter soft rodlike particles with anisotropic repulsive interactions can form a stable smectic-B phase. Our results demonstrate that the soft anisotropic purely-repulsive potential between the rodlike particles can reflect the interaction nature between soft rodlike particles in a simple way and is sufficient to produce a range of ordered LC-like mesophases.