论文部分内容阅读
为解决基于蚁群优化的图像边缘检测算法中信息素的作用不明显,难以获得全局最优解,从而降低目标边缘的检测精确度与效率等问题,提出一种基于细菌趋化性(BC)耦合蚁群优化(ACO)的边缘检测算法。通过细菌趋化性找到最佳解决方案,用于产生信息素的初值;将BC得到的信息素初值作为ACO的初始信息素,计算每只蚂蚁的行走概率,从而选择最佳的行走路径。当蚂蚁每经历一个像素点时,更新局部信息素。全部的蚂蚁完成迭代后,进行全局信息素更新,搜寻全局最优解;最后,根据信息素最优解与阈值的关系,得到目标的边缘与非边缘,完成边缘