论文部分内容阅读
研究一个具有分布时滞和饱和发生率的海洛因传染病模型。计算得到疾病的基本再生数;分析相应特征方程根的分布,研究系统可行平衡点的局部渐近稳定性;构造适当的Lyapunov泛函和应用LaSalle不变性原理,证明当基本再生数小于1时,系统的无病平衡点全局渐近稳定;当基本再生数大于1时,系统的地方病平衡点全局渐近稳定。