论文部分内容阅读
现有图像分类大都采用单一特征,不能利用多个特征之间性能互补优势,且将特征选择与分类器构造分割开来,影响图像分类的精度和分类器的泛化能力。针对以上问题提出一种基于混沌二进制粒子群算法(CBPSO)的特征选择和SVM参数同步优化方法,利用图像的综合特征,将特征选择和SVM分类器构造结合同步优化,仿真实验结果表明,该算法能同步找出最优的特征子集和合适的SVM参数,提高了图像分类精度和分类器泛化能力。